TABLE OF CONTENTS

SE		
	CTION ONE: INTRALOX SYSTEM	
	BELT CONSTRUCTION	4
	DRIVE METHOD	4
	DESIGN REQUIREMENTS	
	DESIGN REQUIREMENTS.	2
	BELT SELECTION PROCESS	5
	INTRALOX SERVICES	16
SE	CTION TWO: PRODUCT LINE	17
	HOW TO USE THIS SECTION	17
	CTANDADD DELTAMATEDIALO	17
	STANDARD BELT MATERIALS SPECIAL APPLICATION BELT MATERIALS BELT MATERIAL PROPERTIES	18
	SPECIAL APPLICATION BELT MATERIALS	18
	BELT MATERIAL PROPERTIES	21
	BELT STYLE AND MATERIAL AVAILABILITY	22
	BLET OT THE AND WATERIAL AVAILABILITY	22
	FRICTION FACTORS	31
	FRICTION FACTORS	32
	SPECIAL APPLICATION SPROCKET MATERIAL	32
	ODDOLGET MATERIAL AVIABILITY	02
	SPROCKET MATERIAL AVAILABILITY BELT SELECTION INSTRUCTIONS	აა
	BELT SELECTION INSTRUCTIONS	36
	STRAIGHT RUNNING BELTS	
	SERIES 100	30
	SERIES 200	45
	SERIES 400	53
	CEDIEC 900	00
	SERIES 800 SERIES 850	/ /
	SERIES 850	. 107
	SERIES 900	. 115
	SERIES 1000	141
	OFFICE 4400	447
	SERIES 1100	
	SERIES 1200	. 163
	SERIES 1400	. 177
	SERIES 1400	107
	CEDICO 4000	. 13/
	SERIES 1600	. 203
	SERIES 1650	. 213
	SERIES 1700	
	SERIES 1800	
	CEDICO 1000	. 220
	SERIES 1900	. 231
	SIDEFLEXING BELTS	
	SERIES 2200	. 237
	SERIES 2400	240
	SERIES 2600	
	SERIES 2700	. 277
	SERIES 3000	285
	CEDIEC 4000	200
	SERIES 4000	. 289
	SERIES 9000	. 299
	SQUARE SHAFTS	303
	SQUARE SHAFTS	304
	ROUND BORE ADAPTERS	207
	ROUND BORE ADAFTERS	. 307
	SCROLL IDLERS WEARSTRIPS	. 308
	WEARSTRIPS	. 308
	CUSTOM WEARSTRIPS	310
	PUSHER BARS	210
	DEAD DIATEO	. 510
	DEAD PLATES . EZ CLEAN IN PLACE SYSTEM (CIP)	. 311
	EZ CLEAN IN PLACE SYSTEM (CIP)	. 312
	HOLD DOWN ROLLERS EZ ROLLER RETROFIT™ PRODUCTS.	. 312
	EZ BOLLER RETROEIT™ PRODUCTS	313
	ADDACION DEGICTANCE CYCENA	245
	ABRASION RESISTANCE SYSTEM	. 315
	ABRASION RESISTANCE HINGE RODS	. 316
SE	CTION THREE: DESIGN GUIDELINES BASIC CONVEYOR FRAME REQUIREMENTS.	. 317
	BASIC CONVEYOR FRAME REQUIREMENTS	317
	DIMENSION DEFINITIONS	210
	DIMENSION DEFINITIONS	. 310
	DRIVE GUIDELINES. SHAFT SIZES AND MATERIALS.	. 318
	SHAFT SIZES AND MATERIALS	. 318
	DRIVE SHAFT TORQUE LOADING	319
	Bitive of Military Conditions and Co	
		240
	POWER REQUIREMENTS	. 319
	RETAINING SPROCKETS	. 319
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS.	. 319 . 319 . 320 . 320
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS	. 319 . 320 . 320 . 320 . 320
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS.	. 319 . 320 . 320 . 320 . 320
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS.	. 319 . 320 . 320 . 320 . 320
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS	. 319 . 320 . 320 . 320 . 320 . 321 . 321
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION.	. 319 . 319 . 320 . 320 . 320 . 321 . 321
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS	. 319 . 319 . 320 . 320 . 320 . 321 . 321 . 322
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS	. 319 . 320 . 320 . 320 . 321 . 321 . 322 . 322
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS	. 319 . 320 . 320 . 320 . 321 . 321 . 322 . 322
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS.	. 319 . 320 . 320 . 320 . 321 . 321 . 322 . 322
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH.	. 319 . 320 . 320 . 320 . 321 . 321 . 322 . 322 . 322
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION.	. 319 . 319 . 320 . 320 . 321 . 321 . 322 . 322 . 322
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION.	. 319 . 319 . 320 . 320 . 321 . 321 . 322 . 322 . 322
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION.	. 319 . 319 . 320 . 320 . 321 . 321 . 322 . 322 . 322
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS.	. 319 . 319 . 320 . 320 . 321 . 321 . 322 . 322 . 322 . 323 . 323 . 323
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WARSTRIP CARRYWAYS WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS.	. 319 . 319 . 320 . 320 . 321 . 321 . 322 . 322 . 322 . 323 . 323 . 324
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS.	. 319 . 319 . 320 . 320 . 321 . 321 . 322 . 322 . 322 . 323 . 323 . 324 . 326
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS	.319 .319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS	.319 .319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS	.319 .319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS	.319 .319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES	.319 .320 .320 .320 .321 .321 .322 .322 .322 .323 .323 .324 .326 .326 .328 .332 .333 .333 .333 .333 .333 .333
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS	.319 .320 .320 .320 .321 .321 .322 .322 .322 .323 .324 .326 .326 .328 .333 .333 .333 .333 .333
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAY S. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. END-OFF/END-ON TRANSFERS DEAD PLATES	.319 .319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAY S. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. END-OFF/END-ON TRANSFERS DEAD PLATES	.319 .319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS. ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS. ELEVATING CONVEYORS. SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. END-OFF/END-ON TRANSFERS. DEAD PLATES. 90° CONTAINER TRANSFERS.	.319 .320 .320 .320 .321 .321 .322 .322 .322 .323 .323 .324 .326 .328 .333 .333 .333 .333 .333 .333 .333
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS	319 319 320 320 321 321 322 322 322 323 323 323 323 323
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS	319 319 320 320 321 321 322 322 322 323 323 323 323 323
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS. ELEVATING CONVEYORS. SIDEFLEXING CONVEYORS. TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. DEAD PLATES. 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS. SPECIAL DESIGN GUIDELINES. THERMAL EXPANSION AND CONTRACTION.	.319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS. ELEVATING CONVEYORS. SIDEFLEXING CONVEYORS. TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. DEAD PLATES. 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS. SPECIAL DESIGN GUIDELINES. THERMAL EXPANSION AND CONTRACTION.	.319 .320 .320 .321 .321 .322 .322 .322 .323 .323 .323
	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS. ELEVATING CONVEYORS. SIDEFLEXING CONVEYORS. TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. END-OFF/END-ON TRANSFERS DEAD PLATES. 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS. SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION. EXPANSION DUE TO WATER ABSORPTION	319 320 320 321 321 322 322 322 322 323 324 326 326 336 333 333 333 333 333 333 333
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS THANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT	319 319 320 320 321 322 322 322 322 322 323 323 323 323
SE	RETAINING SPROCKETS. INTERMEDIATE BEARINGS. ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS. SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAY WEARSTRIP CONFIGURATION. WEARSTRIP DESIGN CONSIDERATIONS. ROLLERS AS CARRYWAYS. RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS. ELEVATING CONVEYORS. ELEVATING CONVEYORS. TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. END-OFF/END-ON TRANSFERS. DEAD PLATES. D9° CONTAINER TRANSFERS. VACUUM TRANSFER APPLICATIONS. SPECIAL DESIGN GUIDELINES. THERMAL EXPANSION AND CONTRACTION. EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT. ICTION FORWILAS AND TABLES.	319 320 320 321 321 322 322 322 322 322 323 323 323
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS. ELEVATING CONVEYORS. SIDEFLEXING CONVEYORS. TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. END-OFF/END-ON TRANSFERS. DEAD PLATES. 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS. SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION. EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT. CTION FOUR: FORMULAS AND TABLES. SYMBOLS USED.	319 319 320 320 321 322 322 322 322 322 323 323 333 333
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS. SOLID PLATE CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP CARRYWAYS. WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS. CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS. SPECIAL TAKE-UP ARRANGEMENTS. SPECIAL CONVEYORS. BI-DIRECTIONAL CONVEYORS. ELEVATING CONVEYORS. SIDEFLEXING CONVEYORS. TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES. END-OFF/END-ON TRANSFERS. DEAD PLATES. 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS. SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION. EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT. CTION FOUR: FORMULAS AND TABLES. SYMBOLS USED.	319 319 320 320 321 322 322 322 322 322 323 323 333 333
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES D9° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT CITION FOUR: FORMULAS AND TABLES. SYMBOLS USED	319 320 320 321 321 322 322 322 322 322 323 323 323
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAY RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TOME ONVEYORS ELEVATING CONVEYORS ELEVATING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS DEAD PLATES 91° CONTAINER TRANSFERS THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT COTION FOUR: FORMULAS AND TABLES. SYMBOLS USED FORMULAS. SAMPLE PROBLEMS	319 319 320 320 321 321 322 322 322 323 323 324 326 333 334 335 336 336 337 337 337 337 337 337 337 337
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAY RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TOME ONVEYORS ELEVATING CONVEYORS ELEVATING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS DEAD PLATES 91° CONTAINER TRANSFERS THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT COTION FOUR: FORMULAS AND TABLES. SYMBOLS USED FORMULAS. SAMPLE PROBLEMS	319 319 320 320 321 321 322 322 322 323 323 324 326 333 334 335 336 336 337 337 337 337 337 337 337 337
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS BI-DIRECTIONAL CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES D90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT CITION FOUR: FORMULAS AND TABLES. SYMBOLS USED FORMULAS. SAMPLE PROBLEMS TABLES. MEASUREMENT CONVERSION FACTORS	319 319 320 320 321 321 322 322 322 322 323 323 323 323
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH. BACK TENSION. STANDARD RETURNWAYS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS BI-DIRECTIONAL CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES D90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT CITION FOUR: FORMULAS AND TABLES. SYMBOLS USED FORMULAS. SAMPLE PROBLEMS TABLES. MEASUREMENT CONVERSION FACTORS	319 319 320 320 321 321 322 322 322 322 323 323 323 323
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL TOME ONVEYORS ELEVATING CONVEYORS ELEVATING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT COTION FOUR: FORMULAS AND TABLES SYMBOLS USED FORMULAS. SAMPLE PROBLEMS TABLES. MEASUREMENT CONVERSION FACTORS CHEMICAL RESISTANCE GUIDE	319 319 320 320 321 321 322 322 322 322 323 323 323 333 33
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT CTION FOUR: FORMULAS AND TABLES. SYMBOLS USED FORMULAS. SAMPLE PROBLEMS TABLES. MEASUREMENT CONVERSION FACTORS CHEMICAL RESISTANCE GUIDE STRAIGHT RUNNING BELT DATA SHEET	319 319 320 320 321 321 322 322 322 322 323 323 323 323
SE	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT CTION FOUR: FORMULAS AND TABLES. SYMBOLS USED FORMULAS. SAMPLE PROBLEMS TABLES. MEASUREMENT CONVERSION FACTORS CHEMICAL RESISTANCE GUIDE STRAIGHT RUNNING BELT DATA SHEET	319 319 320 320 321 321 322 322 322 322 323 323 323 323
	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT CITION FOUR: FORMULAS AND TABLES. SAMPLE PROBLEMS TABLES. MEASUREMENT CONVERSION FACTORS CHEMICAL RESISTANCE GUIDE STRAIGHT RUNNING BELT DATA SHEET RADIUS BELT DATA SHEET	319 319 320 320 321 322 322 322 322 322 322 323 324 326 333 333 333 333 333 333 333 334 335 336 337 337 339 339 339 339 339 339 339 339
GL	RETAINING SPROCKETS INTERMEDIATE BEARINGS ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS SOFT STARTING MOTORS AND FLUID COUPLINGS BELT CARRYWAYS SOLID PLATE CARRYWAYS WEARSTRIP CARRYWAYS WEARSTRIP CARRYWAYS ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION WEARSTRIP DESIGN CONSIDERATIONS ROLLERS AS CARRYWAYS RETURNWAYS AND TAKE-UPS CONTROL OF BELT LENGTH BACK TENSION STANDARD RETURNWAYS SPECIAL TAKE-UP ARRANGEMENTS SPECIAL CONVEYORS BI-DIRECTIONAL CONVEYORS ELEVATING CONVEYORS SIDEFLEXING CONVEYORS SIDEFLEXING CONVEYORS TIGHT TRANSFER METHODS FOR SERIES 1100 TRANSFER DESIGN GUIDELINES END-OFF/END-ON TRANSFERS DEAD PLATES 90° CONTAINER TRANSFERS VACUUM TRANSFER APPLICATIONS SPECIAL DESIGN GUIDELINES THERMAL EXPANSION AND CONTRACTION EXPANSION DUE TO WATER ABSORPTION "SLIP-STICK" EFFECT CTION FOUR: FORMULAS AND TABLES. SYMBOLS USED FORMULAS. SAMPLE PROBLEMS TABLES. MEASUREMENT CONVERSION FACTORS CHEMICAL RESISTANCE GUIDE STRAIGHT RUNNING BELT DATA SHEET	319 319 320 320 321 322 322 322 322 322 322 323 324 326 333 333 333 333 333 333 333 334 335 336 337 336 337 337 337 337 337 337 337

Conveyor Belting Engineering Manual

WARRANTY

Intralox, LLC warrants products of its own manufacture for a period of one year from date of shipment to the extent that Intralox, LLC will repair or replace any products of faulty material or defective workmanship proven under normal use or service. No other warranty is expressed or implied unless otherwise set forth in writing and approved by a representative duly authorized to extend such approval by Intralox, LLC.

CAUTION

Intralox, LLC does not warrant that the design and/or operational function of any machine that incorporates and/or intends to incorporate Intralox, LLC products, conform to any local, state and/or federal regulations and standards relating to public safety, worker safety, safety guards, sanitation safety, fire safety, or any other safety regulations. ALL PURCHASERS AND USERS SHOULD CONSULT THEIR APPROPRIATE LOCAL, STATE AND FEDERAL SAFETY REGULATIONS AND STANDARDS.

NOTICE

The information contained in this manual is provided only as an aid and service to our customers. Intralox, LLC does not warrant the accuracy or applicability of such information and, Intralox, LLC is specifically not responsible for property damage and/or personal injury, direct or indirect for damages and/or failures caused by improper machine design, application, installation, operation, abuse and/or misuse of its products whether or not based on information contained herein.

WARNING

Intralox products are made of plastic and can burn. If exposed to an open flame or to temperatures above Intralox specifications, these products may decompose and emit toxic fumes. Do not expose Intralox conveyor belting to extreme temperatures or open flame. Flame retardant belt products are available in some series. Contact Intralox.

MAINTENANCE

Prior to installing, aligning, cleaning, lubricating or performing maintenance on any conveyor belt, sprocket or system, consult the federal, state and local regulations in your area regarding the control of hazardous/stored energy (lockout/ tagout).

Intralox, LLC warrants products of its own manufacture for a period of one year from date of shipment to the extent that Intralox, LLC will repair or replace any products of faulty material or defective workmanship proven under normal use or service. No other warranty is expressed or implied unless otherwise set forth in writing and approved by a representative duly authorized to extend such approval by Intralox, LLC.

Intralox, L.I.C. manufactures products under one or more of the following U.S. patents: 5.072,640 - 5.074,406 - 5.083,660 - 5,101,966 - 5,156,262 - 5,156,263 - 5,316,522 - 5,361,893 - 5,372,248 - 5,377,819 - 5,507,383 - 5,544,740 - 5,597,063 - 5,598,916 - 5,850,902 - 5,904,241 - 6,119,848 - 6,138,819 - 6,148,990 - 6,209,714 - 6,209,716 - 6,334,528 - 6,367,616 - 6,398,015 - 6,401,904 - 6,439,378 - 6,467,610 - 6,474,464 - 6,494,312 - 6,499,587 - 6,554,129 - 6,571,937 - 6,644,466 - 6,681,922 - 6,695,135 - 6,705,460 - 6,749,059 - 6,758,323 - 6,811,021 - 6,837,367 - 6,926,134 - 6,968,941 - 6,997,306 - 7,055,678 - 7,070,043 - 7,111,725 - 7,147,099 - 7,191,894 - 7,210,573 - 7,216,759 - 7,228,954 - 7,237,670 - 7,249,669 - 7,249,671 - 7,248,653 - 7,311,192 - 7,344,018 - 7,360,641 - 7,393,451 - 7,424,948 - 7,426,992 - 7,461,739 - 7,494,006 - 7,506,750 - 7,506,751 . Other U.S. and foreign patents pending.

A subsidiary of the Laitram, LLC. All rights reserved worldwide. Intralox is a registered trademark of the Laitram, LLC. © 2010 Intralox, LLC. 50076 English.

FOR CUSTOMER SERVICE AND SALES ENGINEERING ASSISTANCE, CALL THE NUMBERS LISTED ON THE BACK COVER OF THIS MANUAL.

INDEX OF FIGURES AND TABLES

Fig. 1–1	Bricklayed modules	
Fig. 2-1	HOLD DOWN RAILS AND WEARSTRIPS FOR SERIES 2200 FLAT-TURN:	3
Fiä. 2–2	2 TYPICAL 2-TURN RADIUS LAYOUT	
Fig. 2–3	SERIES 2400 HOLD DOWN GUIDES FOR FLAT TURNS	
Fig. 2–4	HOLD DOWN RAILS AND WEARSTRIPS FOR SERIES 2400 FLAT-TURN:	S - STANDARD BELTS
Fig. 2–5	HOLD DOWN RAILS AND WEARSTRIPS FOR SERIES 2400 FLAT-TURNS	S - HIGH DECK AND RAISED RIB BELTS 264
Fig. 2–6	HOLD DOWN RAILS AND WEARSTRIPS FOR SERIES 2400 FLAT-TURN	
Fig. 2–7	TYPICAL 2-TURN RADIUS LAYOUT	266
Fig. 2–8	HOLD DOWN RAILS AND WEARSTRIPS FOR SERIES 2600 FLAT-TURN	
Fig. 2–9	TYPICAL 2-TURN RADIUS LAYOUT	276
Fig. 2–1	HOLD DOWN RAILS AND WEARSTRIPS FOR SERIES 2700 FLAT-TURN	
Fig. 2–1	1 TYPICAL 2-TURN RADIUS LAYOUT	
Fig. 2–1	2 Shaft dimensions	
Fig. 2–1	3 Retainer rings	
Fia. 2–1	M Pound here adenter	307
Fig. 2–1 Fig. 2–1		
Fig. 2–1 Fig. 2–1	6 HUMNA Choicith wearstrips	200
Fig. 2-1	7 Chainlean steal health all HIMM use retains	309 309 310
Fig. 2–1	Jamiliess steel backed Uniniw Wearstilps.	309
Fig. 2–1	8 IZU UHIWW RADIUS BELT CUSTOM WEARSTRIPS	310
Fiğ. 2–1	Pusner par side view	311
Fig. 2–2	20 Pusner bar assembly	311
Fig. 2–2	Dual blade pusher bar assembly	311
Fig. 2–2	ZZ Dead plates	311
Fig. 2–2	Split sprockets	315
Fig. 2–2		315
Fig. 2–2		316
Fig. 2–2		316
Fig. 2–2	27 Series 1400 with Slidelox®	316
Fig. 3–1	Conventional conveyor components	
Fig. 3–2	Basic dimensional requirements (roller returnway)	
Fig. 3–3	Chordal effects - bottom of range	318
Fiğ. 3–4	Chordal effects - top of range	318
Fiğ. 3–5	Typical shaft features	
Fig. 3–6	Intermediate bearings recommended mounting arrangement	320
Fiğ. 3–7	Straight, parallel wearstrip arrangement	321
Fiğ. 3–8	Chevron wearstrip arrangement	321
Fig. 3–9	Ruckling helt rows	
Fig. 3–1	0 Anti-sag configuration	322 324 324 324 324
Fig. 3–1	1 Short conveyors (less than 6' [1.8 m])	324
Fia. 3-1	2 Medium to long conveyors (6' 1.8 ml and longer)	324
Fig. 3–1	3 Conveyors with slide beds.	324
Fig. 3–1	4 Gravity style take-up	
Fig. 3–1	5 Center-driven bi-directional conveyor	
Fig. 3–1	6 Center drive with nose bars	327
Fig. 3–1	7 Push-null bi-directional conveyor	
Fig. 3–1	R Incline conveyor	
Fig. 3–1	Q Decline conveyor	
Fig. 3–1	20 Elevating conveyor with helt edge elider return	330
Fig. 3–2	21 Elevating conveyor with with side sides return 21	330 330
Fig. 3–2 Fig. 3–2	22 Elevating conveyor with choc return	
Fig. 3–2 Fig. 3–2	22 Lield down roller	
Fig. 3–2 Fig. 3–2		
rig. 3–2 Fia. 3–2	1-4 Floid down roller, side view	১১৫
Fig. 3–2 Fig. 3–2	29 Forior 1100 people view	
rig. 3–2 Fig. 3–2	.0 Series i 100 105ebat collityuration — Eliu ulive	332 333 333
riy. 3-2	27 Finger transfer plates dimensional requirements	
Fig. 3–2 Fig. 3–2	O Deau plate gap	335 335 335 E™ LIVE TRANSFER BELT 336 340
rig. 3–2 Fig. 3–3	On Derobello guide reil contours	200
	Parabolic guide rail contours	
Fig. 3–3	PARABOLIC GOIDE RAIL CONTOURS WITH 6.0 In. (152 mm) ONEPIECI	LIVE TRANSFER BELT
Fig. 4–1	Primary loads — conventional conveyor	340
Fig. 4–2	Catenary sag.	343
Table 1	(W) BELLI WEIGHT IN ID/TT* (Kg/m²)	
Table 2	(FW) COEFFICIENT OF BUNNING EDICTION BETWEEN WEARSTRIP &	348 348 3ELT 348 ELT 348 349
Table 3	(Fp) COEFFICIENT OF RUNNING FRICTION BETWEEN CONTAINER & B	ELI
Table 4	BELT STRENGTHS IN Ib/ft (kg/m).	348
Table 5	SPROCKET AND SUPPORT QUANTITY REFERENCE	349
Table 6		
Table 7	(I) TEMPERATURE FACTOR	350
Table 8	SHAFT DATA	351
Table 9	MAXIMUM RECOMMENDED TORQUE ON DRIVE SHAFT	
Table 10	BELT PULL LIMITS VS SHAFT SPAN FOR RETAINER RING GROOVES.	351 352 S) 353
Table 1	1 AIR FLOW RATE THROUGH BELT, PER SQUARE FOOT OF BELT AREA	
Table 12	2 MAXIMUM DRIVE SHAFT SPAN LENGTH (CONVENTIONAL CONVEYOR	S)

SECTION ONE: INTRALOX SYSTEM

In the early 1970's, Intralox belts revolutionized the conveyance of industrial and food products with a brand new style of belt: modular plastic conveyor belts.

Constructed of plastic modules and hinge rods, and driven and tracked by plastic sprockets, Intralox belts have the inherent qualities plant operators and designers look for: corrosion resistance, positive drives, high strength, lower friction characteristics and abrasion resistance.

In addition to these characteristics, Intralox belt designs help keep the plant cleaner, reduce downtime for maintenance and make belt repairs a quicker, easier process.

Intralox, LLC has over 400 different combinations of belt styles, materials and colors to choose from. We've been helping processors convey with better efficiency for more than 35 years.

This manual will give you technical information about our products and their uses. But, high quality belts and accessories are only *part* of the total package Intralox offers to customers.

When you buy an Intralox belt, you get all of the support and service that has made Intralox the leading modular plastic conveyor belt supplier in the world:

- Local District Managers belt recommendations are backed with a money back guarantee.
- 24 hour Customer Service, 365 days a year. More than 80 Customer Service Representatives 14 languages represented.
- Technical Support to assist you in any emergency.
- A 99+% on time ship rate.

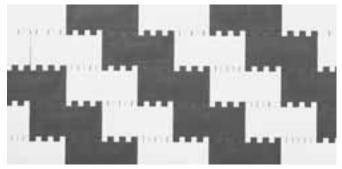
Intralox will help you find the right belt for your application. Call us today at the toll free numbers listed on the back cover.

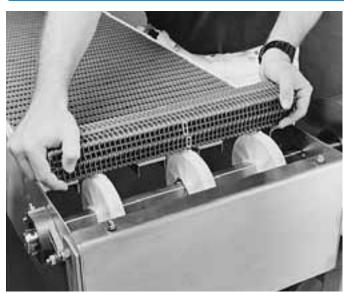
BELT CONSTRUCTION

All Intralox belts are constructed with injection-molded plastic modules. These are assembled into interlocked units and joined by plastic hinge rods. Except for narrow belts (one complete module or less in width), all are built with the joints between modules staggered with those of adjacent rows in a "bricklayed" fashion. This structure interlocks the modules, giving the belt inherent lateral strength. The hinge rods do not hold the belt together from side to side, but act only as pivot members in shear. The belt that results from this construction process is intrinsically strong, both laterally due to the bricklaying, and longitudinally due to the rods being placed in multiple shear.

Because of modular construction, Intralox belts can be made in almost any width from three links wide.

Each belt style incorporates several distinguishing features. Hinge and edge features are described below. Surface, pitch and drive features are described in detail in "Belt selection process" (page 5).




Fig. 1-1 Bricklayed modules

OPEN HINGES — The hinge rods are visible from either the top or bottom surface (or both) of the belt to aid in belt inspection.

CLOSED HINGES — The hinge rods are completely enclosed to protect them from abrasives or contaminants.

FLUSH EDGES — Flush edges ride snugly beside the conveyor frame rails without gaps or exposed rod heads. They reduce the possibility of product, or belt, snagging on the frame.

DRIVE METHOD

Intralox belts are positively driven by plastic or metal sprockets, not friction rollers. The sprockets, another part of the Intralox System, have square bores and are driven by matching square shafts. (Note: Sprockets are available with round bores for special applications.) Not only do square

shafts transmit torque (rotational force) without the need for troublesome keys and keyways, they accommodate the lateral expansion differences of the plastic belt material and the metal shafts. Only one sprocket per shaft is retained. The others are allowed to "float", moving along the shaft as the belt expands or contracts. Thus, the sprockets are always transmitting torque. Of all belt drive systems tested, the square shaft with square bore sprockets has proven to be the most effective, economical, reliable, trouble free and simple.

DESIGN REQUIREMENTS

Intralox conveyor belts are available in a variety of styles, materials and colors, with many accessory options. In order to make the appropriate selections when designing for a particular application, reliable information about operating and environmental conditions is critical.

Factors to evaluate include:

- The *type of belt system*: straight running or sideflexing
- The overall *dimensions* of the installed belt: length between driving and idling shafts, width, elevation changes
- The *speed* of belt travel
- The *characteristics of the product* to be conveyed:
- 1. density
- 2. unit size and shape
- 3. hardness, toughness, brittleness, rigidity
- 4. texture (smooth, rough, granular, lumpy, spongy. . .)
- 5. corrosiveness
- 6. moisture content
- 7. temperature
- 8. frictional nature
- Any process change in the product during conveyance:
- 1. heating

- 2. cooling
- 3. washing, rinsing, draining
- 4. drying
- The sanitary and cleanliness requirements and conditions:
 - 1. USDA-FSIS approval
 - 2. harsh temperatures or chemicals
 - 3. continuous on-line cleaning
- The planned methods of product loading and removal smooth or impact transfers
- The characteristics of the operating environment:
 - 1. temperature
- 2. moisture, humidity
- 3. chemical nature (acid, base, etc.)
- 4. abrasive materials (sand, grit, etc.)
- 5. hazardous materials (dusts, vapors, etc.)
- The *type of drive system*:
- 1. motors
- 2. chains.

For more detailed information, see "Section three: Design guidelines" (page 317).

BELT SELECTION PROCESS

STEP ONE: Choose the right type of **BELT SYSTEM** — straight running or sideflexing.

All Intralox belts can be used as straight running belts. Series 2200, Series 2400, Series 2600, Series 2700, Series 2800, Series 3000 and Series 4000 are designed for sideflexing applications.

STEP TWO: Choose the right **MATERIAL** for your application.

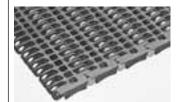
Intralox belts and accessories are available in standard and special application materials. For complete descriptions of the standard and special application belt materials see, "Standard belt materials" (page 18) and "Special application belt materials" (page 18).

Contact the Intralox Sales Engineering Department or Customer Service for more information. Current telephone numbers are listed on the back cover.

For specific recommendations on chemical properties, see "Chemical Resistance Guide" (page 355).

STEP THREE: Select the best belt surface, pitch and drive method.

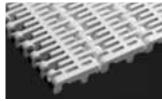
Next in the process of choosing the belt for your application is to determine the **BELT SURFACE** or **STYLE** best suited for the product or material being conveyed.


The **PITCH** of the belt is the next differentiating feature. Intralox belts are available in 0.50 in. (12.7 mm), 0.60 in. (15.2 mm), 1.00 in. (25.4 mm), 1.07 in. (27.2 mm), 1.25 in. (31.8 mm), 1.44 in. (36.6 mm), 1.50 in. (38.1 mm), 2.00 in. (50.8 mm), 2.07 in. (52.6 mm) and 2.50 in. (63.5 mm) pitches. Smaller pitch reduces chordal action (over similar size sprockets) and the space required for product transfer.

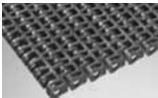
DRIVE METHOD should also be considered. There are two drive methods used by Intralox: hinge-driven and center-driven. Where back tension is an important consideration, drive method plays a significant role.

Note: Unless otherwise noted, the belts have fully flush edges.

FLUSH GRID SURFACE

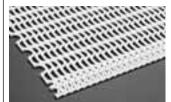

SERIES 100 • Center-driven • Open hinge • 1.00 in.(25.4 mm) nitch

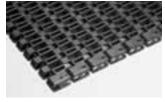
SERIES 200 • Hinge-driven • Closed hinge • 2.00 in.(50.8 mm) pitch • Non flush edge


SERIES 400 • Center-driven • Closed hinge • 2.00 in.(50.8 mm) pitch

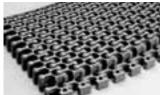
SERIES 800 • Center-driven • Open hinge • 2.00 in.(50.8 mm) nitch

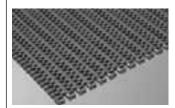
SERIES 900 • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch

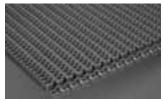

SERIES 1100 • Hinge-driven • Open hinge • 0.60 in. (15.2 mm) pitch

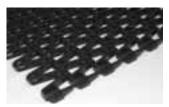

SERIES 1200 · Center-driven • Closed hinge • 1.44 in. (36.6 mm) pitch

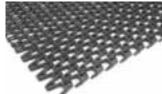
SERIES 1400 • Center/Hinge-driven • Closed hinge • 1.00 in. (25.4 mm) pitch


SERIES 1500 • Hinge-driven • Open hinge • 0.50 in. (12.7 mm) pitch

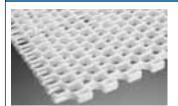

SERIES 1700 • Center/Hinge-driven • Closed hinge • 1.50 in. (38.1 mm) pitch

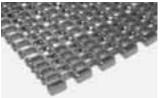

SERIES 2200 • Hinge-driven • Open hinge • Sideflexing • 1.50 in. (38.1 mm) pitch

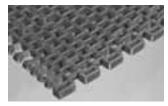

SERIES 2200 HIGH DECK • Hinge-driven • Open hinge • Sideflexing • 1.50 in. (38.1 mm) nitch


SERIES 2400 (1.7 & 2.2) • Hinge-driven • Open hinge • Sideflexing • 1.00 in. (25.4 mm) pitch (1.7 not shown)

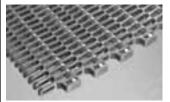
SERIES 2400 HIGH DECK • Hinge-driven • Open hinge • Sideflexing • 1.00 in. (25.4 mm) pitch

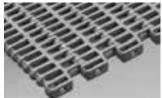

SERIES 2600 (1.0) • Hingedriven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch

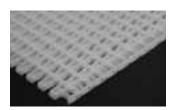

SERIES 2600 (1.1) • Hingedriven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch


FLUSH GRID SURFACE

SERIES 2600 (1.6) • Hinge-driven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch

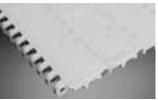

SERIES 2600 (2.2) • Hingedriven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch


SERIES 2600 (2.5) • Hinge-driven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch


SERIES 2600 (3.2) • Hingedriven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch

SERIES 2700 (1.6) • Hingedriven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch

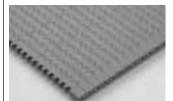
SERIES 2700 (2.2) • Hingedriven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch



SERIES 9000 • Center/Hinge-driven • Closed hinge • 1.01 in. (25.7 mm) pitch

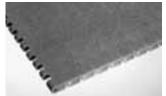

FLAT TOP SURFACE

SERIES 400 • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch


SERIES 800 • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch

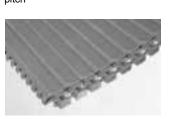
SERIES 800 TOUGH • Centerdriven • Open hinge • 2.00 in. (50.8 mm) pitch

SERIES 900 • Center-driven • Closed hinge • 1.07 in. (27.2 mm) pitch

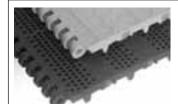

SERIES 1000 • Center/Hingedriven • Closed hinge • 0.60 in. (15.2 mm) pitch

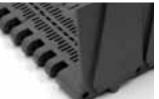
SERIES 1100 • Hinge-driven • Open hinge • 0.60 in. (15.2 mm) pitch

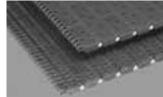
SERIES 1200 • Center-driven • Closed hinge • 1.44 in. (36.6 mm)

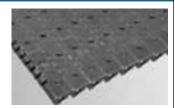

SERIES 1400 • Center/hingedriven • Closed hinge • 1.00 in. (25.4 mm) pitch

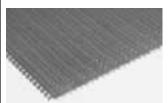
SERIES 1600 • Center-driven • Open hinge • 1.00 in. (25.4 mm) pitch

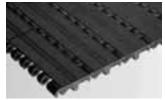

SERIES 1800 • Center-driven • Open hinge • 2.50 in. (63.5 mm) pitch


SERIES 2400 • Hinge-driven • Open hinge • Sideflexing • 1.00 in. (25.4 mm) pitch

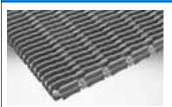

PERFORATED FLAT TOP SURFACE


SERIES 800 • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch

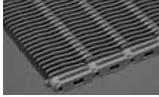

SERIES 800 MS/LS WITH MOLDED-IN SIDEGUARDS • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch


SERIES 900 • Center-driven • Closed hinge • 1.07 in. (27.2 mm) nitch

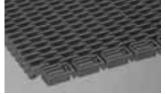
SERIES 1100 • Hinge-driven • Open hinge • 0.60 in. (15.2 mm) nitch

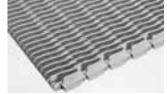


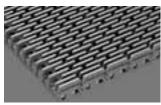
SERIES 1600 • Center-driven • Open hinge • 1.00 in. (25.4 mm) pitch



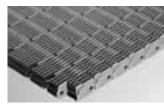
SERIES 1800 • Center-driven • Open hinge • 2.50 in. (63.5 mm)

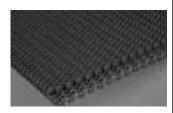

RAISED RIB SURFACE


SERIES 100 • Center-driven • Open hinge • 1.00 in. (25.4 mm) pitch


SERIES 400 • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch

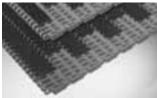

SERIES 800 • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch

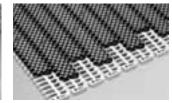

SERIES 900 • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch

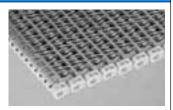

SERIES 1200 • Center-driven • Closed hinge • 1.44 in. (36.6 mm) pitch

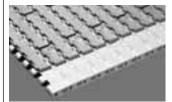
SERIES 1200 NON SKID • Center-driven • Closed hinge • 1.44 in. (36.6 mm) pitch

SERIES 1900 • Center/Hinge-driven • Closed hinge • 2.07 in. (52.6 mm) pitch

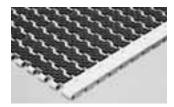

SERIES 2400 • Hinge-driven • Open hinge • Sideflexing • 1.00 in. (25.4 mm) pitch

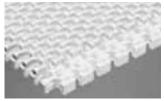

FRICTION SURFACE

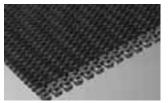

SERIES 800 ROUNDED • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch


SERIES 900 DIAMOND and FLAT • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch

SERIES 900 SQUARE • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch


SERIES 1100 • Hinge-driven • Open hinge • 0.60 in. (15.2 mm) nitch

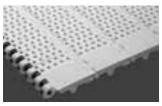

SERIES 1400 FLAT • Center/ Hinge-driven • Closed hinge • 1.00 in. (25.4 mm) pitch


SERIES 1400 SQUARE • Center/Hinge-driven • Closed hinge • 1.00 in. (25.4 mm) pitch

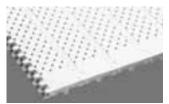
SERIES 1400 OVAL • Center/ Hinge-driven • Closed hinge • 1.00 in. (25.4 mm) pitch

SERIES 2200 • Hinge-driven • Open hinge • Sideflexing • 1.50 in. (38.1 mm) pitch

SERIES 2400 • Hinge-driven • Open hinge • Sideflexing • 1.00 in. (25.4 mm) pitch

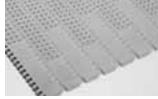


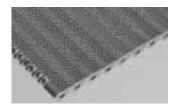
SERIES 2600 ROUNDED • Hinge-driven • Open hinge • Sideflexing • 2.00 in. (50.8 mm) pitch

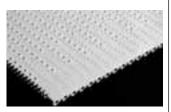

TEXTURED FLAT TOP

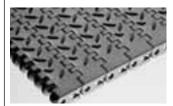
SERIES 400 NON SKID • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch

SERIES 800 NUB TOP • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch


SERIES 800 CONE TOP • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch

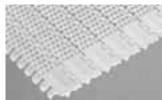

SERIES 800 OPEN HINGE CONE TOP • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch


SERIES 800 MINI RIB • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch

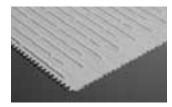

SERIES 900 NUB TOP • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch

SERIES 1100 EMBEDDED
DIAMOND TOP • Hinge-driven •
Open hinge • 0.60 in. (15.2 mm)
pitch

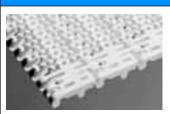
SERIES 1100 CONE TOP • Hinge-driven • Open hinge • 0.60 in. (15.2 mm) pitch


SERIES 1200 NON SKID • Center-driven • Closed hinge • 1.44 in. (36.6 mm) pitch

SERIES 1400 EMBEDDED
DIAMOND TOP • Center/Hingedriven • Closed hinge • 1.00 in.
(25.4 mm) pitch

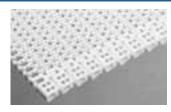

SERIES 1400 NON SKID • Center/Hinge-driven • Closed hinge • 1.00 in. (25.4 mm) pitch

SERIES 1600 NUB TOP • Center-driven • Open hinge • 1.00 in. (25.4 mm) pitch



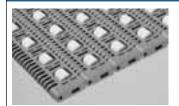
SERIES 1600 MESH NUB
TOP • Center-driven • Open hinge
• 1.00 in. (25.4 mm) pitch

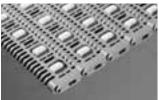
SERIES 1600 MINI RIB • Center-driven • Open hinge • 1.00 in. (25.4 mm) pitch


TEXTURED FLUSH GRID

SERIES 800 NUB TOP • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch

SERIES 900 NUB TOP • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch


SERIES 1100 NUB TOP • Hinge-driven • Open hinge • 0.60 in. (15.2 mm) pitch


SERIES 1700 NUB TOP • Center/Hinge-driven • Closed hinge • 1.50 in. (38.1 mm) pitch

ROLLER

SERIES 400 ROLLER TOP • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch

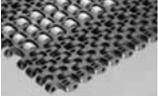
SERIES 400 TRANSVERSE ROLLER TOP • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch

SERIES 400 0.85"
TRANSVERSE ROLLER TOP •
Center-driven • Closed hinge •
2.00 in. (50.8 mm) pitch

SERIES 400 0° ANGLED ROLLER • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch

SERIES 400 30° ANGLED ROLLER • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch

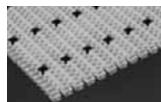
SERIES 400 45°/60° ANGLED ROLLER • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch


SERIES 400 BALL • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch

SERIES 800 ROLLER TOP • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch

SERIES 900 INSERT ROLLERS • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch

SERIES 1000 INSERT ROLLER TOP • Center/Hingedriven • Closed hinge • 0.60 in. (15.2 mm) pitch

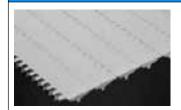

SERIES 1400 ROLLER TOP • Center/Hinge-driven • Closed hinge • 1.00 in. (25.4 mm) pitch

SERIES 1700 TRANSVERSE ROLLER TOP • Center/Hingedriven • Closed hinge • 1.50 in. (38.1 mm) pitch

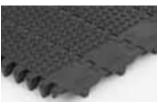
SERIES 2200 INSERT
ROLLERS • Hinge-driven • Open
hinge • Sideflexing • 1.50 in.
(38.1 mm) pitch

SERIES 2400 INSERT
ROLLERS (2.4 & 2.8) • Hingedriven • Open hinge • Sideflexing •
1.00 in. (25.4 mm) pitch (2.4 not shown)

OPEN GRID SURFACE



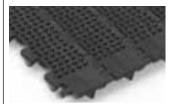
SERIES 200 • Hinge-driven • Closed hinge • 2.00 in. (50.8 mm) pitch • Non flush edge



SERIES 900 • Center-driven • Open hinge • 1.07 in. (27.2 mm) pitch

SEAMFREETM

SERIES 800 OPEN HINGE FLAT TOP • Center-driven •
Open hinge • 2.00 in. (50.8 mm)
pitch • Flush edge

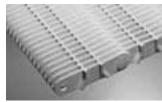

SERIES 800 OPEN HINGE NUB TOP • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch • Flush edge

SERIES 800 OPEN HINGE CONE TOP • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch • Flush edge

SERIES 850 MINIMUM HINGE FLAT TOP • Centerdriven • Open hinge • 2.00 in. (50.8 mm) pitch • Flush edge

SERIES 850 MINIMUM HINGE NUB TOP • Centerdriven • Open hinge • 2.00 in. (50.8 mm) pitch • Flush edge

SERIES 850 MINIMUM HINGE CONE TOP • Centerdriven • Open hinge • 2.00 in. (50.8 mm) pitch • Flush edge



SERIES 1650 MINIMUM HINGE FLAT TOP • Centerdriven • Open hinge • 1.00 in.
(25.4 mm) pitch • Flush edge

OPEN HINGE FLUSH GRID SURFACE

SERIES 200 • Hinge-driven • Open hinge • 2.00 in. (50.8 mm) pitch • Non flush edge

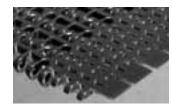
SERIES 400 • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch • Non flush edge

OPEN HINGE FLAT TOP SURFACE

SERIES 800 • Center-driven • Open hinge • 2.00 in. (50.8 mm) pitch • Flush edge

SERIES 1600 • Center-driven • Open hinge • 1.00 in. (25.4 mm) pitch • Flush edge

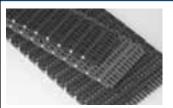
SERIES 1800 • Center-driven • Open hinge • 2.50 in. (63.5 mm) pitch • Flush edge


ONEPIECE™ LIVE TRANSFER^a

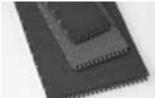
SERIES 900 FLUSH GRID • Center- driven • Open hinge • 1.07 in. (27.2 mm) pitch • Available widths: 4.7 in. (119 mm) and 6.0 in. (152 mm)

SERIES 900 FLAT TOP • Center-driven • Closed hinge • 1.07 in. (27.2 mm) pitch • Available widths: 4.7 in. (119 mm) and 6.0 in. (152 mm)

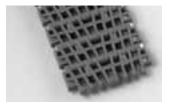
SERIES 1100 FLUSH GRID • Hinge driven • Open hinge • 0.60 in. (15.2 mm) pitch • Available width: 4 in. (76 mm) and up in 1.00 in. (25.4 mm) increments and 6.0 in. (152 mm) MTW



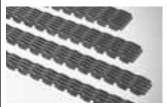
SERIES 1400 FLAT TOP •
Center/hinge driven • Closed hinge
• 1.00 in. (25.4 mm) pitch •
Available widths: 6.0 in. (152 mm)
and 9.3 in. (236 mm)


Note: Series 900 Live Transfer edges are also available with bricklayed belts. For more information, see the data pages in Section 2 or contact Intralox Customer Service.

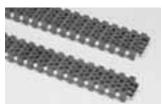
a. Intralox offers belt styles in dedicated widths. These products come in industry standard widths, and are available in 10 foot (3.1 m) increments.

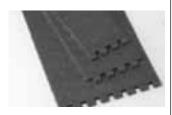

MOLD TO WIDTH^a

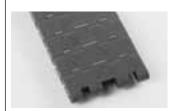
SERIES 900 FLUSH GRID • Center- driven • Open hinge • 1.07 in. (27.2 mm) pitch • Available widths: 3.25 in. (83 mm), 4.5 in. (114 mm) and 7.5 in. (191 mm)

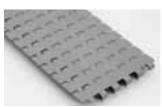

SERIES 900 FLAT TOP •
Center-driven • Closed hinge •
1.07 in. (27.2 mm) pitch • Available widths: 3.25 in. (83 mm), 4.5 in. (114 mm) and 7.5 in. (191 mm)

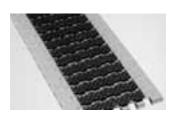
SERIES 900 FLUSH GRID
(85 mm) • Center-driven •
Open hinge • 1.07 in. (27.2 mm)
pitch • Available width: 85 mm


SERIES 900 FLAT TOP (85 mm) Center-driven • Closed hinge • 1.07 in. (27.2 mm) pitch • Available width: 85 mm


SERIES 900 RAISED RIB • Center driven • Closed hinge • 1.07 in. (27.2 mm) pitch • Available widths: 1.1 in. (29 mm) , 1.5 in. (37 mm), 1.8 in. (46 mm) and 2.2 in. (55 mm)


SERIES 900 SQUARE FRICTION TOP • Center driven • Closed hinge • 1.07 in. (27.2 mm) pitch • Available width: 1.1 in. (29 mm)


SERIES 1100 FLUSH GRID • Hinge driven • Open hinge • 0.60 in. (15.2 mm) pitch • Available width: 1.5 in. (38 mm) and 1.8 in. (46 mm)


SERIES 1400 FLAT TOP • Center/hinge driven • Closed hinge • 1.00 in. (25.4 mm) pitch • Available widths: 3.25 in. (83 mm), 4.5 in. (114 mm), 6.0 in. (152 mm) and 7.5 in. (191 mm)

SERIES 1400 FLAT TOP (85 mm) • Center/hinge driven • Closed hinge • 1.00 in. (25.4 mm) pitch • Available width: 85 mm

SERIES 1400 6" FLAT TOP WITH SLEF-CLEARING EDGE • Center/hinge driven • Closed hinge • 1.00 in. (25.4 mm) pitch • Available width: 6.0 in. (152 mm)

SERIES 1400 SQUARE FRICTION TOP • Center/hinge driven • Closed hinge • 1.00 in. (25.4 mm) pitch • Available width: 6.0 in. (152 mm)

SERIES 1400 OVAL FRICTION TOP • Center/hinge driven • Closed hinge • 1.00 in. (25.4 mm) pitch • Available width: 6.0 in. (152 mm)

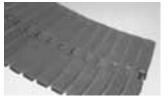
MOLD TO WIDTH^a

SERIES 1400 3.25" FLAT FRICTION WITH TABS •

Center/hinge driven • Closed hinge • 1.00 in. (25.4 mm) pitch • Available width: 6.0 in. (152 mm)

SERIES 4009 FLUSH GRID ·

Hinge driven • Closed hinge • Sideflexing • 1.00 in. (25.4 mm) pitch • Available width: 83.8 mm (for parallel running at 85 mm)


SERIES 4009 FLAT TOP •

Hinge driven • Closed hinge • Sideflexing • 1.00 in. (25.4 mm) pitch • Available width: 83.8 mm (for parallel running at 85 mm)

SERIES 4014 FLAT TOP ·

Hinge driven • Closed hinge • Sideflexing • 1.00 in. (25.4 mm) pitch • Available width: 83.8 mm (for parallel running at 85 mm)

SERIES 4090 SIDEFLEXING

pitch • Available widths: 4.5 in. (114 mm), 7.5 in. (191 mm)

FLAT TOP • Hinge driven • Closed hinge • 1.00 in. (25.4 mm)

SERIES 4091 SIDEFLEXING FLAT TOP • Hinge driven •

Closed hinge • 1.00 in. (25.4 mm) pitch • Available widths: 4.5 in. (114 mm), 7.5 in. (191 mm)

SERIES 4092 SIDEFLEXING

FLAT TOP • Hinge driven • Closed hinge • 1.00 in. (25.4 mm) pitch • Available widths: 4.5 in. (114 mm), 7.5 in. (191 mm)

a. Intralox offers belt styles in dedicated widths. These products come in industry standard widths, and are available in 10 foot (3.1 m) increments.

KNUCKLE CHAIN

SERIES 3000 • Center-driven • Closed hinge • 2.00 in. (50.8 mm) pitch • Turning and straight running. Available width: 57 mm

(excluding tabs)

STEP FOUR: Select a belt of sufficient **STRENGTH** for your application.

After choosing the material and surface style to meet your needs, next determine if the belt selected is strong enough to meet your application requirements.

Analysis for straight running belts:

After making a tentative selection from the Series and Styles listed above, turn to the "Belt Selection Instructions" (page 36), **Product Line**, for instructions to determine the **Belt Pull** and **Adjusted Belt Pull** for comparison with the **Allowable Strength** for that belt. In order to make the necessary calculations for **Belt Pull**, gather this information:

- 1. the product weight applied to the belt, in pounds per square foot (or kilograms per square meter),
- 2. the length of the proposed conveyor, in feet (or meters),
- 3. any elevation changes in the conveyor, in feet (or meters),
- 4. the desired operating speed, in feet per minute (or meters per minute),
- 5. the percent of belt area "backed-up" with stationary product,
- 6. the *maximum* operating temperature to be experienced by the belt, in degrees Fahrenheit (or degrees Celsius),
- 7. the type of material upon which the belt will run in the conveyor frame, e.g., Stainless or Carbon Steel, Ultra High Molecular Weight Polyethylene (UHMW), High Density Polyethylene (HDPE), nylon, etc., and
- 8. the **Service Duty**, i.e., frequent start-ups under heavy load, an elevating or "pushing conveyor", etc.

Analysis for sideflexing belts:

These belts require a more complex analysis. The following additional information is required:

- 9. the length of each straight run,
- 10.the turning angle and direction of each turn, and
- 11.the inside turning radius, measured from the inside edge of the belt.

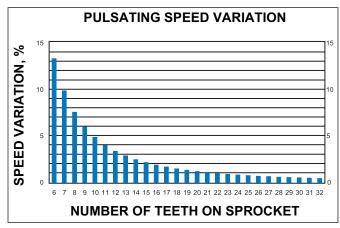
STEP FIVE: Other important considerations.

The following factors should be considered before proceeding any further with belt selection.

BELT SPEED

The belt speed affects the wear and life expectancy in these ways:

1. Hinge and sprocket wear: The frequency of module rotation about the hinge rods (as the belt engages and disengages the sprockets) is directly proportional to speed. The rotary motion can cause wear to both rods and modules. This wear rate, however, is inversely proportional to the belt's length, i.e., a shorter conveyor should wear faster than a longer one if both are running at the same speed. It follows that sprocket/tooth wear is directly proportional to speed. Sprockets with more teeth cause less module/hinge rotation, consequently less wear than sprockets with fewer teeth.

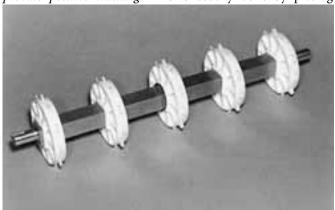

- 2. **Belt surface wear:** As belts slide over carryways, returnways, shoes and other fixed members, some wear is to be expected. The most destructive conditions are high speed, heavy loads, abrasive materials, and dry or non lubricated operation.
- 3. **Dynamic effects of high speed operation:** Two effects of high speed conditions are belt "whipping" or oscillating in unsupported sections and "load surges" as heavy, stationary products are suddenly accelerated to belt speed. Where possible, both conditions should be avoided.

ABRASIVE CONDITIONS AND FRICTION EFFECTS

Abrasives in a conveying application must be identified, the best combination of materials chosen and protective features included in order to extend belt life. Abrasives will wear away any material, but the correct material choice can significantly increase belt life. In highly abrasive applications, the hinge rods and sprockets are usually the first elements to be affected. Hinge rod wear typically results in excessive belt-pitch elongation. This may prevent proper tooth engagement, increasing the wear on sprocket teeth. Intralox offers Stainless Steel split sprockets and Abrasion Resistant rods that work to increase belt life.

CHORDAL ACTION AND SPROCKET SELECTION

As the modules of belts engage their driving sprockets, a pulsation in the belt's *linear* velocity occurs. This is due to chordal action, which is the rise and fall of a module as it rotates around a shaft's center line. It is characteristic of all sprocket-driven belts and chains. The variation in speed is inversely proportional to the number of teeth on the sprocket. For example, a belt driven by a six tooth sprocket has a pulsating speed variation of 13.4%, while a belt driven by a 19 tooth sprocket has a variation of only 1.36%. In those applications, where product tipping is a concern, or where smooth, even speed is *critical*, it is recommended that sprockets with the maximum number of teeth available be selected.


SHAFTS

Intralox, LLC USA can supply square shafts, machined to your specification, in standard sizes of 5/8 in., 1 in., 1.5 in., 2.5 in., 3.5 in., 40 mm and 60 mm. Available materials are Carbon Steel (C-1018) (not available in 40mm and 60mm), Stainless Steel (303, 304 and 316) and Aluminium (6061-T6). Call Customer Service for availability and lead-times.

Intralox, LLC Europe offers square shafts in standard sizes of 25 mm, 40 mm, 60 mm, 65 mm and 90 mm. Available materials are Carbon Steel (KG-37) and Stainless Steel (304).

Square shafts need turning of bearing journals only. No keyways for sprockets are required. Only one sprocket per shaft must be retained to prevent lateral belt movement and to provide positive tracking. This is usually done by placing

retainer rings on opposite sides of the center sprocket. Standard rings rest in grooves cut into the four corners of the shaft. Self-set retainer rings and small bore round retainer rings are available which do not require grooves.

SHAFT STRENGTH

The two primary concerns regarding the strength of the conveyor drive shafts are 1) the ability to pull the belt without excessive shaft deflection, and 2) the strength to transmit the torque for driving the belt. In the first case, the shaft acts as a beam, supported by bearings and stressed by the belt's tension through the sprockets. In the second case, the shaft is being rotated by the drive motor. Resistance from the belt's tension introduces torsional (twisting) stresses. These two types of

stresses, **maximum deflection** and **maximum allowable torque**, are analyzed separately. Simple formulas are provided for selecting appropriate shafts.

Maximum deflection is governed by adequate belt and sprocket tooth engagement. If the shaft deflects more than 0.10 in. (2.5 mm) the sprockets may not engage properly, resulting in "jumping". On bi-directional conveyors with center-drive, the limit is increased to 0.22 in. (5.6 mm) because the return side tension is greater and the tooth loading is more uniformly distributed.

WEARSTRIPS

Wearstrips are added to a conveyor frame to increase the useful life of the conveyor frame and belt, and to reduce the sliding friction forces. Proper choice of wearstrip design and material, yielding the best coefficient of friction, reduces belt and frame wear, and power requirements.

Any clean liquid, such as oil or water, will act as a coolant and as a separation film between the belt and the carryway, usually reducing the coefficient of friction. Abrasives such as salt, broken glass, soil and vegetable fibers will embed in softer materials and wear on harder materials. In such applications harder wearstrips will prolong belt life.

STATIC ELECTRICITY

Plastic belting may produce a static discharge or spark when used in a dry environment. If static electricity is a potential problem in your application, electrical grounding is recommended. Lubricating or adding moisture to the conveyor running surfaces is also recommended. Electrically Conductive Acetal is available in some belt styles. Contact the Intralox Sales Engineering Department for additional recommendations.

INTRALOX SERVICES

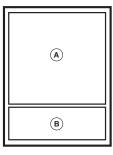
ENGINEERING ASSISTANCE AND DESIGN REVIEW • To obtain engineering assistance, or to request a design review, call the Intralox Sales Engineering Department^a.

ENGINEERING ANALYSIS COMPUTER PROGRAMS • Intralox offers a PC based Engineering Program for all belts used in straight running applications that will calculate belt pull, sprocket requirements, motor and drive information, etc. Call Customer Service^a to request these programs.

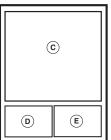
CAD DRAWING FILES • Auto CAD.DXF templates for all Series are also available. The templates have belt and molded sprocket details which can be used in CAD conveyor designs. Call Customer Service^a for more information.

PRODUCT LITERATURE • Intralox offers additional technical and application specific literature on most of the products listed in this manual. Call Customer Service^a for more information.

WORLD WIDE WEB • For information on Intralox products, our company or to download the Intralox Engineering Program, or to download the Engineering Manual on line, visit the Intralox web site at http://www.intralox.com.

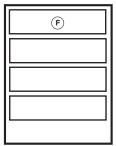

a. See back cover for international listings.

SECTION TWO: PRODUCT LINE


HOW TO USE THIS SECTION

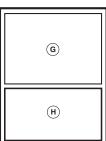
This section of the manual contains descriptive information and data for all belt styles, sprockets and other accessories in the Intralox Product Line.

BELT DATA


- **A Belt Description** principal characteristics, dimensions and photographs.
- **B Data** strengths, weights, temperature ranges of belts in the materials in which they are manufactured.

SPROCKET DATA

These pages follow the belt data pages in each series.


- **C Sprocket and Support Table** for determining the *minimum* number of sprockets and wearstrips required.
- **D Strength Factor** operating strength of sprockets.
- **E Sprocket Spacing** for determining maximum spacing of sprockets on drive shaft.

SPROCKETS AND ACCESSORIES

These pages follow the sprocket data pages and are found at the end of most sections.

F Sprockets, Flights, Sideguards, Finger Transfer Plates, etc.— description, availability for each series.

CONVEYOR DATA

- **G** Conveyor Frame Dimensions basic dimensional requirements.
- **H Dead Plate Gap Data** gap between surfaces allowing for chordal action of the belt.

IMPORTANT BELT WIDTH MEASUREMENT NOTE:

Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.

STANDARD BELT MATERIALS

ACETAL thermoplastics are considerably stronger than polypropylene and polyethylene, and have a good balance of mechanical and thermal properties.

- Good fatigue endurance and resilience.
- Low coefficient of friction, making it a good choice for container handling and transport.
- Temperature range is -50 °F (-46 °C) to 200 °F (93 °C).
- Specific gravity is 1.40 and relatively impact resistant.
- Acetal belts are fairly hard, so they are relatively cut and scratch resistant.
- This material complies with FDA regulations for use in food processing and packaging applications, and is USDA-FSIS accepted (meat and poultry).
- USDA Dairy accepted, white acetal is available in some belt styles.
- A specially formulated UV resistant black acetal is available for applications that require UV protection. The UV resistant black acetal is not FDA approved, and is currently available in **Series 1800 Mesh Top**.
- Anti Static Acetal (AS Acetal) is available for applications where a slow static buildup has to be dissipated. With AS acetal, this dissipation is slow and improves in a humid environment. Anti Static Acetal is currently available in Series 400 Non Skid.
- This material complies with the requirements of EC Directive 2002/72/EC and all amendments to date for food contact.

POLYETHYLENE, another lightweight thermoplastic, is characterized by superior flexibility and high impact strength.

- Buoyant in water, with a specific gravity of 0.95.
- Excellent product release characteristics.
- Exhibits excellent performance at much lower temperatures.
- Temperature range is -100 °F (-73 °C) to 150 °F (66 °C). (Check belt specifications for exact figures).
- Resistant to many acids, bases and hydrocarbons.
- Black polyethylene is recommended for low temperature applications exposed to direct sunlight.

- This material complies with FDA regulations for use in food processing and packaging applications, and is USDA-FSIS accepted (meat and poultry).
- USDA Dairy accepted, natural polyethylene is available in some belt styles.
- This material complies with the requirements of EC Directive 2002/72/EC and all amendments to date for food contact.

POLYPROPYLENE is a standard material for use in general applications and where chemical resistance may be required.

- Good balance between moderate strength and lightweight.
- Buoyant in water, with a specific gravity of 0.90.
- Temperature range is 34 °F (1 °C) to 220 °F (104 °C).
- A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45 °F (7 °C).
- Good chemical resistance to many acids, bases, salts and alcohols.
- This material complies with FDA regulations for use in food processing and packaging applications, and is USDA-FSIS accepted (meat and poultry).
- USDA Dairy accepted, white polypropylene is available in some belt styles.
- This material complies with the requirements of EC Directive 2002/72/EC and all amendments to date for food contact.
- Black polypropylene is recommended for applications exposed to direct sunlight, and a specially formulated UV resistant black polypropylene is also available for applications that require even more UV protection. The UV resistant black PP is not FDA approved, and is currently available in Series 1800 Mesh Top, Series 1100 Flush Grid, Series 900 Flush Grid and Series 900 Perforated Flat Top.

SPECIAL APPLICATION BELT MATERIALS

ABRASION RESISTANT NYLON (AR), is available only for Series 1700.

- For abrasive (wet and dry), heavy-duty applications.
- Available in Black and White which are both FDA approved.
- Temperature range is -50 °F to 240 °F (-46 °C to 116 °C).
- 0.5% expansion in belt width at 100% relative humidity.
- Specific gravity of 1.06
- Heat stabilized for superior outdoor wear.
- Uses the same temperature factor table as regular Nylon.

DETECTABLE POLYPROPYLENE is available in the **Series 800 Flat Top** and **Series 1500 Flush Grid**. This material was developed for applications in the food processing industry where product contamination is a concern. It is

designed to be detectable by metal detectors or x-ray machines and used upline from metal or x-ray detectors. It is specially formulated to enhance impact resistance.

- Temperature range is 0 °F (-18 °C) to 150 °F (66 °C)
- Metal filled material will not rust or expose hazardous sharp fibers.
- Buoyant in water, with a specific gravity of 0.96
- Material has good impact resistance for temperatures above 34 °F (1 °C)
- Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.
- The thermal expansion coefficient is 0.0011 in/ft/ °F (0.17 mm/m/ °C)

intralox•

PRODUCT LINE

- This material complies with the FDA regulations for use in food processing and packaging applications, and is USDA-FSIS (meat and poultry).
- The detectable material has Surface Resistivity per ASTM D257 of 545 Ohms per square.
- Material is NOT for use in metal detectors.
- This material complies with the requirements of EC Directive 2002/72/EC and all amendments to date for food contact.

EC (Electrically Conductive) ACETAL can be used to help dissipate static charges that might build up, especially when moving cans or other conductive objects. A metal railing or carryway can be used to ground the belt, dissipating any charge built up in the product. EC Acetal is usually spliced into "normal" belt sections (three rows of EC Acetal for every 2 ft. (0.61 m) of belt for **Series 100** and **Series 900**, five rows for every 2 ft. (0.61 m) of belt for **Series 1100**), though entire belts can be made from EC Acetal.

- The chemical resistance and friction factors match those of regular acetal.
- EC Acetal has a resistance of 60,000 Ohms per square, compared to a resistance of several million Ohms per square in regular plastics.
- Its specific gravity is 1.40.
- This material is not FDA compliant or USDA-FSIS accepted.
- EC Acetal is only available in Series 100 Flush Grid, Series 400 Flush Grid and Flat Top, Series 900 Flush Grid, Flat Top and Raised Rib, Series 1100 Flush Grid, and Series 1400 Flat Top belt styles.

ENDURALOX™ POLYPROPYLENE is a specially formulated material designed to maximize the life of Intralox belting in a pasteurizer environment by protecting the molecular structure of the polypropylene from environmental factors such as temperature cycling, bromine, and chlorine.

- Same physical properties as standard polypropylene.
- This material complies with FDA regulations for use in food processing and packaging applications.

FLAME RETARDANT THERMOPLASTIC

POLYESTER (FR-TPES) material is V-0 rated (UL94 @ 1/32"), and will not sustain a flame. Though the material will not actively burn, it will blacken and melt in the presence of flame. FR-TPES is stronger than polypropylene, but not as strong as acetal.

- V-0 rated (UL94 @ 1/32").
- FR-TPES' temperature range is 40 °F (4 °C) to 150 °F (66 °C).
- FR-TPES has a specific gravity of 1.45.
- This material is not FDA compliant or USDA-FSIS accepted.
- FR-TPES is available in Series 1100 Flush Grid, Series 900 Flush Grid, Series 900 Flush Grid ONEPIECE™ Live Transfer and Series 900 Perforated Flat Top.

HEAT RESISTANT NYLON (HR), is available in two grades: FDA compliant, and non FDA compliant. The FDA HR Nylon complies with FDA regulations for use in food processing and packaging applications.

• UL94 flammability rating of V-2.

- FDA HR Nylon has an upper, continuous temperature limit of 240 °F (116 °C). For intermittent exposure, FDA HR Nylon has a rating limit of 270 °F (132 °C).
- Non FDA HR Nylon has an upper, continuous temperature limit of 310 °F (154 °C). For intermittent exposure, non FDA HR Nylon is rated at 360 °F (182 °C).
- The specific gravity of both grades is 1.13.
- This product may not be used for food contact articles that will come in contact with food containing alcohol.
- These materials will absorb water in wet environments, causing the belt to expand. The belt will also expand due to the temperature change. The thermal expansion coefficient is 0.00054 in/ft/°F (0.081 mm/m/°C).
- Both FDA HR Nylon and non FDA HR Nylon are available in Series 900 Flush Grid, Raised Rib, Flat Top and Perforated Flat Top styles for dry, elevated temperature applications. Series 1100 Flush Grid is available with non FDA HR nylon.

HIGH SPEED INTRALON™ is available for **Series 2200** and **Series 2400** radius belts. This material was developed for radius applications where the belt speed is over 150 feet per minute. The material has a high PV value that minimizes wear on the inside edge of radius belts.

- High Speed Intralon™ Material is FDA compliant in Bone White
- High Speed Intralon™ Material is not recommended to be used on the outside edge of turns for radius belts.
- Maximum Belt Speed for radius conveyor: 600 fpm (straight running direction)
- This material will absorb water in wet environments, causing the belt to expand.
- Thermal Expansion: 0.00054 in/ft/F°
- Specific Gravity: 1.13
- Temperature information: -50°F to 180°F (-46 °C to 82 °C)

HIGH STRENGTH EC ACETAL (HSEC), is available for applications that require static dissipation. HSEC material is stronger and less brittle than EC Acetal.

- The chemical resistance and friction factors match those of regular Acetal.
- HSEC Acetal has a resistance of 60,000 Ohms per square.
- The specific gravity of HSEC is 1.40.
- This material is not FDA compliant or USDA-FSIS accepted.
- This material is less brittle than EC Acetal.
- This material is only available in Series 400 Non Skid, and Series 1400 Non-Skid.

NYLON is available for applications requiring good dry abrasion and chemical resistance. The two limitations to Nylon are that it absorbs water and is more susceptible to cuts and gouges than acetal. Because of material expansion caused by water absorption, Nylon is not recommended for very wet applications. For example, at 100% relative humidity, the expansion will be close to 3% (at equilibrium), making a 24 in. (610 mm) wide belt expand to 24.75 in. (629 mm).

- Abrasion resistant in dry applications.
- Good chemical resistance and low temperature performance.
- Stronger than polypropylene.
- Temperature range is -50 °F (-46 °C) to 180 °F (82 °C).

- Good fatigue resistance.
- Specific gravity of 1.13.
- This material complies with FDA regulations for use in food processing and packaging applications, and is USDA-FSIS accepted (meat and poultry).
- This material complies with the requirements of EC Directive 2002/72/EC and all amendments to date for food contact.

POLYPROPYLENE COMPOSITE, is a standard material for use in applications where both high strength and chemical resistance may be required.

- Excellent strength and stiffness.
- Specific gravity of 1.12.
- Good chemical resistance to acids, bases, salts and alcohol.
- Temperature range is $-20 \,^{\circ}\text{F} (-29 \,^{\circ}\text{C})$ to $220 \,^{\circ}\text{F} (104 \,^{\circ}\text{C})$.
- An EC (Electrically Conductive) PP Composite can be used to help dissipate static charges that might build up. The EC PP Composite is currently available in Series 1200 Non Skid
- The thermal expansion coefficient is 0.0004 in/ft/ °F (0.06 mm/m/ °C).

PVDF, is a specialty material with excellent chemical resistance to a wide variety of acids and bases.

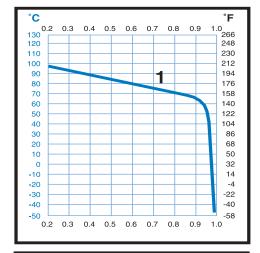
• Excellent resistance to acids, bases, salts, and alcohol.

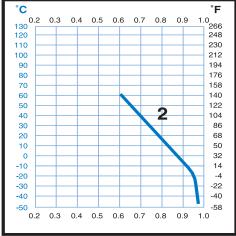
- Specific gravity of 1.78.
- Temperature range is -34 °F (1 °C) to 200 °F (93 °C).
- PVDF is currently available in **Series 9000 Flush Grid**.
- This material is not FDA compliant.
- V-0 rated (UL94 @ 1/32 in.)
- Stronger than polypropylene.
- The thermal expansion coefficient is 0.00087 in/ft/ °F (0.13 mm/m/ °C).

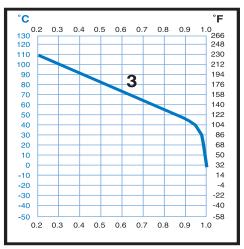
X-RAY DETECTABLE ACETAL Designed specifically to be detected by x-ray machines. Developed for applications in the food processing industry where product contamination is a concern. To be used upline from an x-ray detector. This material complies with the FDA regulations for use in food processing and packaging applications. Temperature range -50 to 200°F(-46 to 93°C). Similar to regular acetal, it is considerably stronger than polypropylene and polyethylene, and has a good balance of mechanical, thermal and chemical properties. X-Ray Detectable Acetal has the same chemical resistance as regular acetal. The thermal expansion coefficient is 0.0007 in/ft/°F (0.10 mm/m/°C). Testing the material with an x-ray detector in a production environment is the best method for determining detection sensitivity. Available in Series 800 SeamFree Open Hinge Flat Top and Series 1500 Flush Grid. Available in light teal color to also make visually detectable.

BELT MATERIAL PROPERTIES

SPECIFIC GRAVITY is the ratio of the materials' density to the density of water at normal pressures and temperatures. A specific gravity greater than 1.0 indicates that the material is heavier than water, and a specific gravity less than 1.0 indicates the material will be buoyant in water.


MATERIAL	SPECIFIC GRAVITY
Polypropylene	0.90
Polypropylene Composite	1.12
Polyethylene	0.95
Acetal	1.40
EC Acetal	1.40
FR-TPES	1.45
Nylon	1.13
HR Nylon (both grades)	1.13


FRICTION FACTORS determine the amount of drag induced from the belt sliding on the conveyor frame or sliding under the conveyed product. Lower friction factors lead to lower line pressures, less product marring, and lower belt pull and power requirements. Sometimes higher friction is required for gradual inclines/declines or for higher line pressures for feeding other equipment. The friction factors generally refer to "clean" systems, with little wear or abrasive material present. When running a conveyor belt strength analysis (either by using the Intralox Engineering Program or by using the hand calculations outlined in "Belt Selection Instructions" (page 36)), normal practice would dictate using a higher friction factor than normal if any abrasive medium is present, such as flour, sand, cardboard dust, glass, etc. Under very dirty conditions, friction factors may be two to three times higher than under clean conditions.


TEMPERATURE has an affect on the physical properties of thermoplastic materials. Generally, as the operating temperature increases, the belt will weaken in strength, but become tougher and more impact resistant. Conversely, in colder applications, belts can become stiffer and in some cases brittle. The temperature factor curve shows the effect of temperature on belt strength, and this graph can be used in calculating the conveyor belt analysis by hand. The Intralox Engineering Program calculates the temperature factor automatically, based on the operating temperature of the application. For a complete listing of temperature factors (T), please refer to "Table 7 (T) TEMPERATURE FACTOR" (page 350).

TEMPERATURE FACTOR TABLES STANDARD MATERIALS

- 1 -Acetal and EC Acetal
- 2 -Polyethylene
- 3 -Polypropylene

BELT STYLE AND MATERIAL AVAILABILITY

The chart below lists the available materials for each belt material must be approved. As an example, Series 900 style. It should be noted that not all combinations of styles and materials are inventory items. Not all styles and material combinations are USDA-FSIS accepted (Meat and Poultry, or Dairy). For USDA-FSIS acceptance, both the belt style and the

Flush Grid in polypropylene is USDA-FSIS accepted for direct food contact, but Series 900 Flush Grid in EC Acetal (not a FDA or UDSA-FSIS accepted material) is not USDA-FSIS accepted.

		ds les				elt ength	Tempe Rar (contir	nge	Belt	Weight			1=WI			ceptab = Natu	ility ral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/ 72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
	•			SE	RIES	100 - N	ominal Pitch	1.00 in. (25.4	mm)									
			Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.54	2.64	•	•		•			•	3
			Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.58	2.83		•		•			•	3
FLUSH GRID	31	F,S	Acetal	Polypropylene	600	890	34 to 200	1 to 93	0.78	3.81	•	•		•			•	3
			EC Acetal	Polypropylene	400	595	34 to 200	1 to 93	0.78	3.81								
			Acetal	Polyethylene	550	820	-50 to 70	-46 to 21	0.78	3.81	•	•		•			•	3
			Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.82	4.00	•	•		•			•	3
D.11055 DID	1		Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.88	4.29	•	•		•			•	3
RAISED RIB	31	FTP	Acetal	Polypropylene	600	890	34 to 200	1 to 93	1.20	5.86	•	•		•			•	3
			Acetal	Polyethylene	550	820	-50 to 70	-46 to 21	1.20	5.86		•					•	3
	-					200 - N	ominal Pitch 2	2.00 in. (50.8		ļ							l	-
	T.,		Polypropylene	Polypropylene	1400	2080	34 to 220	1 to 104	1.24	6.05							•	3
OPEN GRID	33	F,S	Polyethylene	Polyethylene	900	1340	-100 to 150	-73 to 66	1.26	6.15								3
			Polypropylene	Polypropylene	1800	2680	34 to 220	1 to 104	1.40	6.83								3
FLUSH GRID	33	F,S	Polyethylene	Polyethylene	1200	1790	-100 to 150	-73 to 66	1.44	7.03								3
	+		Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	1.04	5.08			1					3
OPEN HINGE	45	F,S	Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	1.12	5.47			3					3
			. o.you.y.oo				ominal Pitch 2			0.11								
	Т		Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.82	8.89								3
			Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28								3
FLUSH GRID	17	F,S	Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.77	13.51								3
1 LOGIT GIVID	''	1,5	EC Acetal	Polypropylene	2400	3570	34 to 200	1 to 93	2.77	13.51	-						-	
			Acetal	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.77	13.51								3
			Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.95	9.52	•							3
DAIGED DID			Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.98	9.67	•						•	3
RAISED RIB	26	FTP	Enduralox Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.95	9.52							•	
	1		Polypropylene	Polypropylene	1550	2300	34 to 220	1 to 104	1.16	5.66		•					•	3
OPEN HINGE	30	F,S	Polyethylene	Polyethylene	950	1400	-50 to 150	-46 to 66	1.24	6.06								3
			Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.81	8.82							•	3
			Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28								3
FLAT TOP	0	F,S	Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.74	13.38							•	3
			Acetal	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.74	13.38	•						•	3
NON SKID	0	F	HS EC Acetal	Nylon	2720	4040	-50 to 200	-46 to 93	2.88	14.09								
ROLLER TOP	18	-	Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.44	11.94								3
TRANSVERSE ROLLER TOP	18	-	Polypropylene	Nylon	2200		34 to 200	1 to 93	2.44	11.94								3
0.85" TRANSVERSE ROLLER TOP	18	-	Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.81	13.71							•	3
30° ANGLED ROLLER	17	-	Polypropylene	Nylon	1600	2381	34 to 120	1 to 49	2.64	12.89	•						•	3
GREY POLY- URETHANE ROLLER	11	-	Polypropylene	Nylon	1600	2381	34 to 120	1 to 49	2.73	13.33							•	3
BLACK POLY- URETHANE ROLLER	11	-	Polypropylene	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94								
BALL BELT	0	-	Acetal	Polypropylene	2400	3571	34 to 200	1 to 93	3.71	18.11	•						•	3
	-					-												
							I										L	oxdot

		ds tes				elt ngth	Rai	erature nge nuous)	Belt	Weight			1=WI			ceptab = Natu	ility ral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
							ominal Pitch											
			Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66	•		1	•	•	•	•	3
			Polyethylene Acetal	Polyethylene Polyethylene	500 900	750 1340	-50 to 150	-46 to 66	1.87 2.75	9.13 13.43	•	•	3	•	•	•	•	3
FLAT TOP	0	F,S	Nylon	Polyethylene	1200	1780	-50 to 150	-46 to 66	2.32	11.33			<u>'</u>					3
			Detectable	Blue	650	970	0 to 150	-18 to 66	1.83	8.93								4
			Polypropylene	Polyethylene									_					
OPEN HINGE FLAT	0	F,S	Polypropylene Polyethylene	Polypropylene Polyethylene	900 500	1340 750	34 t0 220 -50 to 150	1 to 104 -46 to 66	1.63	7.96 8.30	•		3				•	3
TOP	"	г,3	Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.30	•		1					3
			Polypropylene	Polypropylene	900	1340	34 t0 220	1 to 104	1.63	7.96			1				•	3
OFAMEDEETM			Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.70	8.30	•		3				•	3
SEAMFREE™ OPEN HINGE FLAT	0	F,S	Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.30	•		1				•	3
TOP		.,,	X-Ray Detectable Acetal	Blue Polyethylene	900	1340	-50 to 150	-46 to 66	2.98	13.67	•							
PERFORATED			Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.54	7.52	٠	•	1				•	3
FLAT TOP	18	F,S	Polyethylene Acetal	Polyethylene	500 900	750	-50 to 150	-46 to 66	1.59	7.76 11.15	•	•	3				•	3
DEDECDATED	14		Polypropylene	Polyethylene Polypropylene	1000	1340 1490	34 to 220	-46 to 66	1.54	7.52	•	·	1				•	3
PERFORATED FLAT TOP ROUND	14	F,S	Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.59	7.76			3					3
HOLES	20	,	Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.28	11.15	•	•	1				•	3
PERFORATED FLAT TOP (MS/LS) WITH MOLDED-IN SIDEGUARDS	20/ 22	F,S	Polypropylene Composite	303/304 Stainless Steel	2000	2975	-20 to 220	-29 to 104	2.47	13.61							•	3
TOUGH FLAT TOP	0	F,S	Hi-Impact	Acetal	500	744	0 to 120	-18 to 49	2.26	11.03	•			•	•	•	•	3
			Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.45	7.08	•		1				•	3
FLUSH GRID	27	F	Polyethylene Acetal	Polyethylene	500 1000	750	-50 to 150 -50 to 150	-46 to 66	1.63	7.96 10.99	•		3				•	3
			Acetal	Polyethylene Polypropylene	1000	1490 1490	34 to 200	-46 to 66 1 to 93	2.25	10.99	•		1					3
MESH TOP	9	F	Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.60	7.86			1				•	3
			Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66	•	•	1	•	•	•	•	3
MINI RIB	0	-	Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.87	9.13	•	•	3	•	•	•	•	3
			Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.92	14.26	•	•	1	•	•	•	•	3
RAISED RIB	40	-	Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.48	7.23	•		_					3
NUB TOP	0	F,S	Polypropylene Polyethylene	Polypropylene Polyethylene	1000 500	1490 750	34 to 220 -50 to 150	1 to 104 -46 to 66	1.90	9.26 9.80	•	•	3	•	•	•	•	3
NOB TOP	١	1,5	Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.95	14.40	•	·	1				•	3
			Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.56	7.62			1				•	3
FLUSH GRID NUB	27	F,S	Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.85	9.03	•		3				•	3
TOP	21	г,3	Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	2.36	11.52	•		1				•	3
			Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	2.36	11.52	•		1				•	3
SEAMFREE™	_	E 0	Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.76	8.58	•		1	-		•	•	3
OPEN HINGE NUB TOP	0	F,S	Polyethylene Acetal	Polyethylene Polyethylene	500 900	750 1340	-50 to 150	-46 to 66	1.84	8.97 13.26	•	•	3	-		•	:	3
			Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.84	8.97	•	·	1			•	•	3
CONE TOP	0	F,S	Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.93	9.44			3		•			3
	L		Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.84	13.89	·	Ŀ	1	•	•	•	•	3
OPEN HINGE			Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96	•						•	3
CONE TOP	0	F,S	Polyethylene	Polyethylene	500	740	-50 to 150	-46 to 66	1.70	8.30	•			<u> </u>		<u> </u>	•	3
0541155555			Acetal Polypropylene	Polyethylene Polypropylene	900	1340 1340	-50 to 150 34 to 220	-46 to 66 1 to 104	2.52 1.70	12.3 8.29	•	-	1				•	3
SEAMFREE™ OPEN HINGE	0	F,S	Polyethylene	Polyethylene	500	740	-50 to 150	-46 to 66	1.76	8.58		-	3	-		-	· ·	3
CONE TOP		. ,0	Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.61	12.72			1				•	3
			Polypropylene	Polypropylene	1000	1490	34 to 200	1 to 93	2.93	14.34	•						•	3
ROLLER TOP	3	-	Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	2.99	14.62	•						•	3
			Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	4.11	20.10	•						•	3
ROUNDED FRICTION TOP	0	-	UV Resistant Acetal	Acetal	2500	3713	-50 to 150	-46 to 66	2.78	13.59								

		ds tes				elt ngth		erature nge nuous)	Belt	Weight			1=Wh		icy Aco Blue, 3		ility ral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/ 72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
							ominal Pitch			40.00	1							
			Acetal Acetal	Acetal Polypropylene	450 400	670 600	-50 to 200 34 to 200	-46 to 93	2.19	10.68	•						•	3
SEAMFREE™			Acetal	Polyethylene	300	450	-50 to 150	-46 to 66	2.13	10.41	•							3
MINIMUM HINGE FLAT TOP	0		Polyethylene	Acetal	300	450	-50 to 150	-46 to 66	1.50	7.32	•						•	3
I LAT TO			Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	1.44	7.05	•						•	3
			Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	1.40	6.83	•						•	3
			Acetal	Acetal	450	670	-50 to 200	-46 to 93	2.39	11.67	٠		1				•	3
SEAMFREE™			Acetal Acetal	Polypropylene Polyethylene	400 300	600 450	34 to 200 -50 to 150	1 to 93 -46 to 66	2.33	11.38 11.38	•		3				•	3
MINIMUM HINGE	0		Polyethylene	Acetal	300	450	-50 to 150	-46 to 66	1.64	8.01	•		3				•	3
NUB TOP			Polyethylene	Polypropylene	200	300	-50 to 150	-46 to 66	1.58	7.71	•		3					3
			Polypropylene	Polypropylene	250	370	34 to 220	1 to 104	1.53	7.47	•		1				•	3
			Acetal	Acetal	450	670	-50 to 200	-46 to 93	2.28	11.13	•		1				•	3
SEAMFREE™			Acetal	Polypropylene	400	600	34 to 200	1 to 93	2.22	10.84	•		3				•	3
MINIMUM HINGE	0		Acetal	Polyethylene	300	450	-50 to 150	-46 to 66	2.22	10.84	٠		3				•	3
CONE TOP			Polyethylene Polyethylene	Acetal Polypropylene	300 200	450 300	-50 to 150 -50 to 150	-46 to 66	1.56	7.62 7.32	•		3				•	3
			Polypropylene	Polypropylene	250	370	34 to 220	1 to 104	1.47	7.18	•		1					3
			Топурторують				ominal Pitch			7.10			'					
			Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.95	•	•		•			•	3
OPEN GRID	38	_	Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.84	4.09	•	•		•			•	3
OI LIN GIVID	30	_	Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.26	6.14	•	•		•			•	3
			Acetal	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.26	6.14	•	•		•			•	3
			Polypropylene	Polypropylene	700 350	1040 520	34 to 220	1 to 104 -46 to 66	0.76	3.70 3.96	•	•		•			•	3
			Polyethylene Acetal	Polyethylene Polypropylene	1480	2200	-50 to 150 34 to 200	1 to 93	1.15	5.62	•							3
			EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.15	5.62								-
FLUSH GRID	38	F,S	FR-TPES	Polypropylene	750	1120	40 to 150	4 to 66	1.19	5.81								
			FDA HR Nylon	FDA Nylon	1200	1790	-50 to 240	-46 to 116	1.10	5.40	•	•						
			Non FDA HR	Non FDA Nylon	1200	1790	-50 to 310	-46 to 154	1.10	5.40								
			Nylon Acetal	Polyethylene	1000		-50 to 70	-46 to 21	1.15									3
					130	59			0.31	0.46	Ť	Ť		_			•	
MOLD TO WIDTH FLUSH GRID - 3.25	20	_	Polypropylene	Nylon	(lb)	(kg)	34 to 220	1 to 104	(lb/ft)		•							3
in. (83 mm) WIDE	30	-	Acetal	Nylon	250	113	-50 to 200	-46 to 93	0.42	0.62								3
					(lb) 263	(kg) 120			(lb/ft) 0.39	(kg/m) 0.58								
MOLD TO WIDTH	20		Polypropylene	Nylon	(lb)	(kg)	34 to 220	1 to 104	(lb/ft)	(kg/m)	•						•	3
FLUSH GRID - 4.5 in. (114 mm) WIDE	38	-	Acetal	Nylon	555	252	-50 to 200	-46 to 93	0.54	0.80								3
, ,			7.00101		(lb)	(kg)	00 10 200	.0.000	(lb/ft)	(kg/m)								ļ .
MOLD TO WIDTH			Polypropylene	Nylon	438 (lb)	199 (kg)	34 to 220	1 to 104	0.59 (lb/ft)	0.88 (kg/m)	•						•	3
FLUSH GRID - 7.5 in. (191 mm) WIDE	38	-	Acetal	Nylon	800	363	-50 to 200	-46 to 93	0.85	1.26								3
, ,			Acetai	TVYIOTI	(lb)	(kg)	-50 to 200	-40 10 33	(lb/ft)	(kg/m)	-						-	
MOLD TO WIDTH FLUSH GRID - 85 mm WIDE	38	-	Acetal	Nylon	275 (lb)	125 (kg)	-50 to 200	-46 to 93	0.38 (lb/ft)	0.57 (kg/m)	•						•	3
ONEPIECE™ LIVE			Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54	•						•	3
TRANSFER FLUSH GRID	38	-	Acetal	Nylon	1480	2200	-50 to 200	-46 to 93	1.15	5.62	•						•	3
GUID			FR-TPES	Nylon	1000	1490	40 to 150 34 to 220	4 to 66	1.63	7.95 5.21	•							2
			Polypropylene Polyethylene	Polypropylene Polyethylene	700 350	1040 520	-50 to 150	1 to 104 -46 to 66	1.07	5.21	•	•		•				3
			Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.68	8.19	•			•			•	3
RAISED RIB	38	FTP	EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.68	8.19								
IVUIOED KID	00	1115	FDA HR Nylon	Nylon	1200	1790	-50 to 240	-46 to 116	1.60	7.80	٠							
			Non FDA HR	Nylon	1200	1790	-50 to 310	-46 to 154	1.60	7.80								
			Nylon Acetal	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.68	8.19								3
MOLD TO WIDTH			Nocidi	i oraculatelle			55 10 10	70 10 21			<u> </u>			-			-	
RAISED RIB - 1.1 in. (29 mm) WIDE	38	FTP	Acetal	Nylon	140 (lb)	64 (kg)	-50 to 200	-46 to 93	0.19 (lb/ft)	0.29 (kg/m)	•						•	3

		ds tes				elt ength	Tempe Rar (contir	nge	Belt	Weight			1=Wh		i cy Ac o Blue, 3		ility ral, 4=Grey	
	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/ 72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
MOLD TO WIDTH RAISED RIB - 1.5 in. (37 mm) WIDE	39	FTP	Acetal	Nylon	200 (lb)	91 (kg)	-50 to 200	-46 to 93	0.23 (lb/ft)	0.35 (kg/m)	•						•	3
MOLD TO WIDTH RAISED RIB - 1.8	40	FTP	Acetal	Nylon	230 (lb)	104 (kg)	-50 to 200	-46 to 93	0.29 (lb/ft)	0.43 (kg/m)	•						•	3
in. (46 mm) WIDE			Polypropylene	Nylon	90 (lb)	41 (kg)	34 to 220	1 to 104	0.19 (lb/ft)	0.28 (kg/m)	٠						•	3
MOLD TO WIDTH RAISED RIB - 2.2 in. (55 mm) WIDE	40	FTP	Acetal	Nylon	200 (lb)	91 (kg)	-50 to 200	-46 to 93	0.34 (lb/ft)	0.50 (lg/m)	•						•	3
			Polypropylene Polyethylene	Polypropylene Polyethylene	700 350	1040 520	34 to 220 -50 to 150	1 to 104 -46 to 66	0.96	4.69 4.95	•						•	3
			Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.50	7.30	•						•	3
FLAT TOP	0	F,S	EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.50	7.30								
			FDA HR Nylon Non FDA HR Nylon	Nylon	1200	1790 1790	-50 to 240 -50 to 310	-46 to 116	1.40	6.80	•							
MOLD TO WIDTH			Acetal Polypropylene	Polyethylene Nylon	1000	1490 59	-50 to 70 34 to 220	-46 to 21	0.37	7.30	•						•	3
FLAT TOP - 3.25 in. (83 mm) WIDE	0	-	Acetal	Nylon	(lb) 250 (lb)	(kg) 113 (kg)	-50 to 200	-46 to 93	(lb/ft) 0.52 (lb/ft)	(kg/m) 0.77 (kg/m)	•						•	3
MOLD TO WIDTH			Polypropylene	Nylon	263 (lb)	120 (kg)	34 to 220	1 to 104	0.52 (lb/ft)	0.77 (kg/m)	•						•	3
FLAT TOP - 4.5 in. (114 mm) WIDE	0	-	Acetal	Nylon	555 (lb)	252 (kg)	-50 to 200	-46 to 93	0.74 (lb/ft)	1.10 (kg/m)	•						•	3
MOLD TO WIDTH FLAT TOP - 7.5 in.	0		Polypropylene	Nylon	438 (lb)	199 (kg)	34 to 220	1 to 104	0.83 (lb/ft)	1.24 (kg/m)	•						•	3
(191 mm) WIDE	U	-	Acetal	Nylon	800 (lb)	363 (kg)	-50 to 200	-46 to 93	1.18 (lb/ft)	1.76 (kg/m)	•						•	3
MOLD TO WIDTH FLAT TOP - 85 mm WIDE	0	-	Acetal	Nylon	500 (lb)	227 (kg)	-50 to 200	-46 to 93	0.50 (lb/ft)	0.74 (kg/m)	•						•	3
ONEPIECE™ LIVE TRANSFER FLAT	0	_	Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54	•						•	3
TOP			Acetal	Nylon	1480	2200	-50 to 200	-46 to 93	1.50	7.30	•						•	3
PERFORATED FLAT TOP	5	F,S	Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.48	7.23	•						•	3
Ø 1/8 in.			Acetal Polypropylene	Polyethylene Polypropylene	700	1490 1040	-50 to 70 34 to 220	-46 to 21	1.48 0.93	7.23 4.54	•						•	3
			Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.98	4.79	•						•	3
			Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.46	7.11	•						•	3
PERFORATED FLAT TOP	6	F,S	EC Acetal FR-TPES	Polypropylene Polypropylene	800 1000	1190 1490	34 to 200 40 to 150	1 to 93 4 to 66	1.46	7.11 7.76								
Ø 5/32 in.		,-	FDA HR Nylon	Nylon	1200	1790	-50 to 240	-46 to 116	1.40	6.80	•							
			Non FDA HR Nylon	Nylon	1200	1790	-50 to 310	-46 to 154	1.40	6.80								
			Acetal	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.46	7.11	•						•	3
PERFORATED FLAT TOP	8	F,S	Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.43	6.98	•						•	3
Ø 3/16 in.	Ľ	. ,5	Acetal	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.43	6.98	•						•	3
MESH TOP	24	,	Polypropylene Polyethylene	Polypropylene Polyethylene	700 350	1040 520	34 to 220 -50 to 150	1 to 104 -46 to 66	0.93	4.55 4.84	•						•	3
			Polypropylene (DFT)	Polypropylene	1000	1490	34 to 150	1 to 66	1.10	5.40	1							
DIAMOND	0	_	Polypropylene (DFT Ultra)	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.80	1							
FRICTION TOP			Polyethylene (DFT)	Polyethylene	350	520	-50 to 120	-46 to 49	1.20	5.90	1							
			Polyethylene (DFT Ultra)	Polyethylene	350	520	-50 to 120	-46 to 49	1.50	7.30	1							
SQUARE FRICTION TOP	0	_	Polypropylene (SFT)	Polypropylene	1000	1490	34 to 150	1 to 66	1.20	5.86								
I MOTION TOP			Polypropylene (SFT Ultra)	Polypropylene	1000	1490	34 to 150	1 to 66	1.50	7.32								

		ds tes				elt ngth	Tempe Rai (contir	nge	Belt	Weight			1=Wh			ceptab = Natu	ility ral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
MOLD TO WIDTH SQUARE FRICTION TOP 29 mm WIDE	0		Polypropylene (SFT Ultra)	Nylon	65	29	34 to 150	1 to 66	0.17	0.25								
FLAT FRICTION	0		Polypropylene (FFT)	Polypropylene	1000	1490	34 to 150	1 to 66	1.10	5.40	1							
ТОР			Polypropylene (FFT Ultra)	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.80	1							
FLUSH GRID WITH INSERT ROLLERS	38	-	Polypropylene Acetal	Polypropylene Polypropylene	490 1030	730 1530	34 to 200 34 to 200	1 to 93 1 to 93	0.76	3.71 3.95	•						•	3
NUB TOP	0		Polypropylene	Polypropylene	700	1040	34 to 200	1 to 104	0.01	4.78	•							3
FLUSH GRID NUB	38	_	Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.80	3.91	_							3
TOP	Jö	-	rotypropylene							5.97	•						•	3
			Acetal	SE Polypropylene	1500	000 - N 2232	lominal Pitch 34 to 220	0.60 in. (15.2 1 to 104	2 mm) 1.55	7.57					1			3
FLAT TOP	0	F,S	Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.07	5.22	•							3
		. ,0	Polyethylene	Polyethylene	600	893	-50 to 150	-46 to 66	1.11	5.42	•							3
	-			SE	RIES 1	100 - N	ominal Pitch	0.60 in. (15.2	2 mm)	I				ı		l	I.	
			Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.95	•	•	1	•	•		•	3
			Polyethylene	Polyethylene	450	670	-50 to 150	-46 to 66	0.87	4.25	٠	٠	3	•			•	3
			Acetal EC Acetal	Polypropylene	1300 800	1940 1190	34 to 200 34 to 200	1 to 93 1 to 93	1.19	5.80 5.80	•	•	1	•			•	3
			FR-TPES	Polypropylene Polypropylene	750	1120	40 to 150	4 to 66	1.19	6.34								
FLUSH GRID	28	F,S	Non FDA HR Nylon	Non FDA Nylon	1100	1640	-50 to 310	-46 to 154	1.20	5.80								
			UV Resistant Polypropylene	UV Resistant Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.98								
			Acetal	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.19	5.80	٠	٠	1	•			•	3
			Polypropylene	Polypropylene	500	750	34 to 220	1 to 104	0.90	4.40	•	•	1	٠	•		•	3
FLAT TOP	0	F,S	Polyethylene Acetal	Polyethylene Polypropylene	300 1000	450 1490	-50 to 150 34 to 200	-46 to 66 1 to 93	0.96 1.30	4.69 6.35	•	•	3	•	•		•	3
			Acetal	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35	•	•	1	•			•	3
PERFORATED			Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.30	6.35	•	•					•	3
FLAT TOP	3	-	Acetal	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35	•	•					•	3
FLUSH GRID FRICTION TOP	28	-	Polypropylene	Polypropylene	700	1040	34 to 150	1 to 66	0.81	3.98	1							
EMBEDDED DIAMOND TOP	0	-	Polyethylene	Polyethylene	300	450	-50 to 150	-46 to 66	0.96	4.69	•	·	3	•	•		•	3
FLUSH GRID MTW 38 AND 46 MM	26	_	Acetal (38mm)	Nylon	130	59	-50 to 200		0.185		•						•	3
WIDE	-"		Acetal (46mm)	Nylon	150	68	-50 to 200	-46 to 93	0.216	0.098	•						•	3
ONEPIECE™ LIVE			Acetal	Nylon	1300	1940	34 to 200	1 to 93	1.19	5.80	•						•	3
TRANSFER FLUSH	28	-	FR-TPES	Nylon	750	1120	40 to 150	4 to 66	1.30	6.34								
GRID			Non FDA HR Nylon	Non FDA HR Nylon	1100	1640	-50 to 310	-46 to 154	1.20	5.80								
51 11011 0DID 1111D			Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.93	4.55	•						•	3
FLUSH GRID NUB	15	F,S	Acetal Polyethylene	Polypropylene Polyethylene	1300 450	1940 670	34 to 200 -50 to 150	1 to 93 -46 to 66	1.36	6.65 4.90	<u>.</u>						•	3
			Acetal	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.36	6.65	•							3
CONE TOP	0	-	Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.31	6.40	•	•	1	•			•	3
	_					200 - N	lominal Pitch		6 mm)			_						
FLUSH GRID	24	-	Polypropylene Composite	Polypropylene	3300	4908	-20 to 220	-29 to 104	2.87	14.01	•							
FLAT TOP	0	-	Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.17	15.45	•							
RAISED RIB	24	FTP	Polypropylene Composite	Polypropylene	3300	4908	-20 to 220	-29 to 104	3.30	16.11	•							
NON SKID	0	-	Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.21	15.65	•							
NON SKID RAISED RIB	0	FTP	Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.58	17.48	•							
KID			UV Resistant Acetal	Acetal	2500	3713	-50 to 150	-46 to 66	4.51	22.02								
					<u> </u>		<u> </u>	L	<u> </u>		<u> </u>					L		Ь

		ls es				elt ngth	Tempe Rar (contir	nge	Belt	Weight			1=Wh		icy Aco Blue, 3		i lity ral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/ 72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
			Acetal	SE Nylon	2500	400 - N 3720	ominal Pitch -50 to 200	1.00 in. (25. -46 to 93	4 mm) 2.75	13.43	•							3
FLAT TOP	0	_	Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	1.85	9.03	÷						•	3
12/11/01	ľ		FR-TPES	Polypropylene	1200	1786	40 to 150	4 to 66	2.76	13.47	•							-
MOLD TO WIDTH FLAT TOP - 3.25 in. (83 mm) WIDE	0	-	Acetal	Nylon	700 (lb)	318 (kg)	-50 to 200	-46 to 93	0.80 (lb/ft)	1.19 (kg/m)	•						•	3
MOLD TO WIDTH FLAT TOP - (85 mm) WIDE	0	-	Acetal	Nylon	700 (lb)	318 (kg)	-50 to 200	-46 to 93	0.80 (lb/ft)	1.19 (kg/m)	٠						•	3
MOLD TO WIDTH FLAT TOP - 4.5 in. (114 mm) WIDE	0	-	Acetal	Nylon	850 (lb)	386 (kg)	-50 to 200	-46 to 93	1.13 (lb/ft)	1.68 (kg/m)	٠						•	3
MOLD TO WIDTH	_		Acetal	Nylon	1200 (lb)	544 (kg)	-50 to 200	-46 to 93	1.40 (lb/ft)	2.08 (kg/m)	•						•	3
FLAT TOP - 6.0 in. (152 mm) WIDE	0	-	Polypropylene	Nylon	850 (lb)	386 (kg)	34 to 220	1 to 104	0.95 (lb/ft)	1.14 (kg/m)	٠						•	3
MOLD TO WIDTH FLAT TOP WITH SELF-CLEARING TABS - 6.0 in. (152 mm) WIDE	0	-	Acetal	Nylon	1000 (lb)	454 (kg)	-50 to 200	-46 to 93	1.08 (lb/ft)	1.61 (kg/m)	•						•	3
MOLD TO WIDTH FLAT TOP - 7.5 in. (191 mm) WIDE	0	-	Acetal	Nylon	1550 (lb)	703 (kg)	-50 to 200	-46 to 93	1.75 (lb/ft)	2.60 (kg/m)	•						•	3
ONEPIECE™ LIVE TRANSFER FLAT TOP	0	-	Acetal	Nylon	850 (lb)	386 (kg)	-50 to 200	-46 to 93	1.25 (lb/ft)	1.86 (kg/m)	•						•	3
ONEPIECE™ 9.3 in. (236 mm) LIVE TRANSFER FLAT TOP	0	-	Acetal	Nylon	1550 (lb)	703 (kg)	-50 to 200	-46 to 93	1.86 (lb/ft)	2.77 (kg/m)	•						•	3
			Polypropylene	Polypropylene	1800	2679	34 to 220	1 to 104	1.61	7.86	•						•	3
FLUSH GRID	21	-	Polypropylene Acetal	Nylon Nylon	1800 2500	2679 3720	34 to 220 -50 to 200	1 to 104 -46 to 93	1.66 2.52	8.10 12.30	•						•	3
			Polypropylene (FFT)	Nylon	1800	2678	34 to 150	1 to 66	2.18	10.64	1						•	3
FLAT FRICTION			Polypropylene (FFT Ultra)	Nylon	1800	2678	34 to 150	1 to 66	2.50	12.16	1							
TOP	0	-	Polyethylene (FFT)	Nylon	1000	1488	-50 to 120	-46 to 49	2.28	11.13								
			Polyethylene (FFT Ultra)	Nylon	1000	1488	-50 to 120	-46 to 49	2.29	11.18								
OVAL FRICTION TOP	0		Polypropylene	Nylon	1800	2678	34 to 150	1 to 66	2.29	11.18	•							
MOLD TO WIDTH OVAL FRICTION TOP	0		Polypropylene (OFT Ultra)	Nylon	800	386	34 to 150	1 to 66	1.15	1.71								
ROLLER TOP	0	-	Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	5.83	28.47	٠						•	3
NON SKID EMBEDDED	0	-	HS EC Acetal	Nylon	1875	2790	-50 to 200	-46 to 93	2.78	13.57								_
DIAMOND TOP	0	-	Polypropylene Polypropylene	Nylon Nylon	1800	2678 2678	34 to 220 34 to 150	1 to 104 1 to 66	1.70 2.23	10.89	•						•	3
SQUARE			(SFT) Polypropylene (SFT Ultra)	Nylon	1800	2678	34 to 150	1 to 66	2.56	12.50								
FRICTION TOP	0	-	Polyethylene (SFT)	Nylon	1000	1488	-50 to 120	-46 to 49	2.32	11.31								
			Polyethylene (SFT Ultra)	Nylon	1000	1488	-50 to 120	-46 to 49	2.68	13.08								
MOLD TO WIDTH SQUARE FRICTION TOP	0	-	Polypropylene (SFT Ultra)	Nylon	800	386	34 to 150	1 to 66	1.15	1.71								

		ds tes				elt ngth	Tempe Rar (contir	nge	Belt '	Weight			1=Wh		cy Ac Blue, 3		oility Iral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
MOLD TO WIDTH FLAT FRICTION TOP WITH TABS - 3.25 in. (83 mm) WIDE	0	-	Acetal	Nylon	700	318	-10 to 130	-23 to 64	0.94	1.40								
				SE	RIES 1	500 - N	ominal Pitch	0.50 in. (12.	7 mm)									
			Polypropylene	Polypropylene	125	186	34 to 220	1 to 104	0.44	2.12	•						•	3
			Polypropylene FDA HR Nylon	Acetal	150 175	223 260	34 to 200 -50 to 240	1 to 93 -46 to 116	0.51	2.40	•						•	3
			Acetal	Nylon Acetal	240	357	-50 to 240	-46 to 93	0.36	3.56	•							3
FLUSH GRID	48	-	Detectable Polypropylene	Acetal	80	119	0 to 150	-18 to 66	0.56	2.73	•							4
			X-Ray Detectable Acetal	Acetal	240	357	-50 to 200	-46 to 93	0.78	3.66								
				SE	RIES 1	600 - N	lominal Pitch	1.00 in. (25.4	4 mm)									
			Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.05	5.13	•		1				•	3
OPEN HINGE FLAT	0	F	Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.10	5.37	٠		3				•	3
TOP			Acetal Acetal	Polypropylene Polyethylene	1400	2100 1490	34 to 200 -50 to 150	1 to 93 -46 to 66	1.58	7.71 7.71	•		1				•	3
	Н		Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.13	5.52								3
NUID TOD			Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.18	5.76								3
NUB TOP	0	-	Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.74	8.49	•						•	3
			Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	1.74	8.49	•						•	3
MINI RIB	0	-	Polypropylene	Polypropylene	700	1040 2100	34 to 220 34 to 200	1 to 104 1 to 93	1.05	5.13 7.71	•		1				•	3
			Acetal Acetal	Polypropylene Polypropylene	1400 1200	1780	34 to 200	1 to 93	1.40	6.84	•		'				<u> </u>	3
MESH TOP	16		Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.94	4.59								3
MESH NUB TOP	16		Acetal	Polypropylene	1200	1780	34 to 200	1 to 93	1.45	7.08	•							3
WILSTINGS TOP	10		Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.98	4.81	•							3
			Acetal	SE Acetal	350	650 - N 520	ominal Pitch -50 to 200	1.00 in. (25.4 -46 to 93	4 mm) 1.47	7.18				I			1	3
SEAMFREE™			Acetal	Polypropylene	325	480	34 to 200	1 to 93	1.47	6.84	•							3
MINIMUM HINGE FLAT TOP	0	-	Acetal	Polyethylene	225	330	-50 to 150	-46 to 66	1.40	6.83								3
I LAT TO			Polypropylene	Polypropylene	225	330	34 to 220	1 to 104	0.91	4.44	•							3
							lominal Pitch											
FLUSH GRID FLUSH GRID NUB TOP	37 37	-	AR Nylon AR Nylon	Nylon Nylon	1800	2678 2678	-50 to 180 -50 to 240	-46 to 82	2.21	10.78	•							
TRANSVERSE ROLLER TOP	26	-	Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	4.70	22.96	•							3
	_						ominal Pitch											
			Polypropylene Polyethylene	Polypropylene Polyethylene	1200 700	1786 1042	34 to 220 -50 to 150	1 to 104 -46 to 66	2.06	10.06	•		3				•	3
FLAT TOP	0	F	Acetal	Polyethylene	1200	1786	-50 to 150	-46 to 66	3.36	16.40	•		1					3
			Acetal	Polypropylene	1500	2232	34 to 200	1 to 93	3.36	16.40	•		1					3
			Polypropylene UV Resistant	Polypropylene	800	1190	34 to 220	1 to 104	1.44	7.03	•						•	3
MESH TOP	32	-	Polypropylene UV Resistant	Acetal Acetal	1100	1640 2230	34 to 200 -50 to 200	1 to 93 -46 to 93	1.55 2.27	7.56								
			Acetal															
	Ш		Polyethylene	Polyethylene SF	400 RIFS 1	595	-50 to 150 lominal Pitch	-46 to 66	1.50	7.32	•						•	3
RAISED RIB	27	FTP	Enduralox™ Polypropylene	Polypropylene	4000	5952	34 to 220	1 to 104	3.90	19.04								
TO NOLD IND	-'	' ''	Polypropylene	Polypropylene	4000	5952	34 to 220	1 to 104	3.90	19.04	•						•	
	_					ı	lominal Pitch		1 mm)									
			Polypropylene	Acetal	1600		34 to 200	1 to 93	1.86	9.10	•	•	1	•	•		•	3
FLUSH GRID	50	F	Polyethylene	Acetal	1000 2500	1490	-50 to 150 -50 to 200	-46 to 66	1.96 2.82	9.56	•	•	3	•	•		•	3
			Acetal Polypropylene	Nylon Polypropylene	1400	3720 2100	-50 to 200 34 to 220	-46 to 93	1.78	13.80 8.69		•	3	•	•		•	3
			. orypropyrenie	. orypropyrenie	1700	2100	07 10 220	1 10 10-	1.70	0.00		Ľ	L '				1	

		ds tes				elt ength	Tempe Rar (contir	nge	Belt	Weight			1=Wh			ceptabi = Natur	ility ral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft		FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
RADIUS FRICTION TOP	50	F	Polypropylene Polyethylene	Acetal Acetal	1600	2380 1490	34 to 150 34 to 150	1 to 66 1 to 66	2.20	10.74 11.23	1							
TOP			Polypropylene	Polypropylene	1400	2100	34 to 150	1 to 66	2.12	10.35	1							
2.6 RADIUS FLUSH GRID WITH	50	F	Polypropylene Acetal	Acetal Nylon	400 630	940	34 to 200 -50 to 200	1 to 93 -46 to 93	1.86	9.08	•						•	3
INSERT ROLLERS	30	'	Polypropylene	Polypropylene	350	520	34 to 220	1 to 104	1.78	8.69	•						•	3
FLUSH GRID HIGH DECK	50	F	Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	3.66	17.87							•	3
				SE	RIES 2	400 - N	lominal Pitch	1.00 in. (25.4	4 mm)									
1.7 RADIUS FLUSH	40		Polypropylene	Acetal	600	892	34 to 200	1 to 93	1.20	5.86	٠		•		•		•	3
GRID	42	F,S	Acetal Polypropylene	Nylon Polypropylene	600	892 892	-50 to 200 34 to 220	-46 to 93	1.73	8.44 5.47	•		•		•		•	3
			Polypropylene	Acetal	1200	1785	34 to 200	1 to 93	1.10	5.40	•		•		•		•	3
2.2 RADIUS FLUSH GRID	42	F,S	Acetal	Nylon	1700	2528	-50 to 200	-46 to 93	1.61	7.86	٠		•		•		•	3
DADILIO EDIOTIONI			Polypropylene	Polypropylene Acetal	1000 1200	1487 1785	34 to 220 34 to 150	1 to 104 1 to 66	1.04	5.11 6.43	•		•		•		•	3
RADIUS FRICTION TOP	42	-	Polypropylene Polypropylene	Polypropylene	1000	1487	34 to 150	1 to 66	1.25	6.14	1							
0.4.0.4.0.1.10.14.17.1.1			Polypropylene	Acetal	500	744	34 to 200	1 to 93	1.20	5.86	•						•	3
2.4 RADIUS WITH INSERT ROLLERS	42	S	Acetal	Nylon	500	744	-50 to 200	-46 to 93	1.73	8.44	•						•	3
			Polypropylene	Polypropylene	500	744	34 to 220	1 to 104	1.12	5.47	•						•	3
2.8 RADIUS WITH	42	s	Polypropylene Acetal	Acetal Nylon	700 1000	1040 1490	34 to 200 -50 to 200	1 to 93 -46 to 93	1.21	5.92 7.86	·						•	3
INSERT ROLLERS			Polypropylene	Polypropylene	600	890	34 to 220	1 to 104	1.04	5.11	•						•	3
			Polypropylene	Acetal	1200	1785	34 to 200	1 to 93	1.79	8.74	•						•	3
RAISED RIB	42	-	Acetal	Nylon	1700	2528	-50 to 200	-46 to 93	2.79	13.62	٠						•	3
RADIUS FLAT TOP	0	_	Polypropylene Acetal	Polypropylene Nylon	1000 1700	1487 2528	34 to 220 -50 to 200	1 to 104 -46 to 93	1.76	8.59 11.00	•						•	3
FLUSH GRID HIGH		_	Polypropylene	Acetal	1200	1785	34 to 200	-1 to 93	1.90	9.28	•		•				•	3
DECK	42	-	Acetal	Acetal	1700	2530	-50 to 200	-46 to 93	2.83	13.82	•		•		•		•	3
				SE	RIES 2	600 - N	lominal Pitch	2.00 in. (50.	8 mm)	1								
1.0 RADIUS SPIRALOX®	56	-	Acetal	Acetal	1300	1935	-50 to 200	-46 to 93	1.46	7.13	•						•	3
1.1 RADIUS	57	_	Acetal	Acetal		2530		-46 to 93	1.54		•						•	3
SPIRALOX® 1.6 RADIUS			Polypropylene Acetal	Acetal Acetal	1500 1700		34 to 200 -50 to 200	1 to 93 -46 to 93	1.04	5.08 7.03	•						•	3
SPIRALOX®	57	-	Polypropylene	Acetal	1500	1	34 to 200	1 to 93	1.01	4.93	•						•	3
2.2 RADIUS	57	_	Acetal	Acetal	1700	2530	-50 to 200	-46 to 93	1.54	7.52	٠						•	3
SPIRALOX®	0,		Polypropylene	Acetal	1500	1	34 to 200	1 to 93	1.04	5.08	٠						•	3
2.5 RADIUS SPIRALOX®	57	-	Acetal Polypropylene	Acetal Acetal	1700 1500	2530 2232	-50 to 200 34 to 200	-46 to 93	1.54	7.52 5.08	•						•	3
3.2 RADIUS			Acetal	Acetal	1700		-50 to 200	-46 to 93	1.54	7.52	•						•	3
SPIRALOX®	57	-	Polypropylene	Acetal	1500		34 to 200	1 to 93	1.04	5.08	٠						•	3
ROUNDED FRICTION TOP			Acetal	Acetal	1700	2530	34 to 150	1 to 166	1.44	7.03	1							
SPIRALOX® (1.6 TR)	57	-	Polypropylene	Acetal	1500	2232	34 to 150	1 to 166	1.01	4.93	1							
ROUNDED FRICTION TOP			Acetal	Acetal	1700	2530	34 to 150	1 to 166	1.54	7.52	1							
SPIRALOX® (2.2, 2.5, 3.2 TR)	57	-	Polypropylene	Acetal	1500	2232	34 to 150	1 to 166	1.04	5.08	1							
, , , ,				SE	RIES 2	700 - N	lominal Pitch	2.00 in. (50.	8 mm)									
1.6 RADIUS SPIRALOX®	51	-	Acetal	Acetal	2000	2974	-50 to 200	-46 to 93	1.74	8.50	•						•	3
1.6 RADIUS	48	-	Acetal	Acetal	1700		-50 to 200	-46 to 93	1.85	9.03	•						•	3
SPIRALOX®	Ĺ		Polypropylene	Acetal	1500		34 to 200 lominal Pitch	1 to 93	1.26	6.15	•						•	3
KNUCKLE CHAIN	-	-	Acetal	303 Stainless	700	317	-50 to 200	-46 to 93	0.88		•						•	3
(STRAIGHT) KNUCKLE CHAIN	-	-	Acetal	Steel 303 Stainless	(lb) 560	(kg) 254	-50 to 200	-46 to 93	(lb/ft) 0.90	1.25	•						•	3
(TURNING)				Steel	(lb)	(kg)			(lb/ft)	(kg/m)								

		ds tes			_	elt ngth	Tempe Rar (contir	ige	Belt '	Weight			1=Wh		icy Aco Blue, 3		ility ral, 4=Grey	
Belt Style	% Open Area	Accessories: F = Flights, S = Sideguards FTP = Finger Transfer Plates	Belt Material	Rod Material	lb/ft	kg/m	°F	°C	lb/ sq ft	kg/ sq m	FDA (USA)	USDA-FSIS Meat & Poultry ^a	USDA Dairy ^b	Canada Food Inspection Agency (CFA)	Australian Quarantine Inspection Service (A)	New Zealand Ministry of Agriculture and Forestry (Z) ^c	European Migration Certificate according to EU Directive 2002/72/EC and its amendments to date (EU MC)	Japan Ministry of Health, Labour, and Welfare (J)
				SE	RIES 4	000 - N	ominal Pitch	1.00 in. (25.4	4 mm)									
4009 FLUSH GRID	13	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	0.97 (lb/ft)	1.44 (kg/m)	•						•	3
4009 FLAT TOP	0	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	1.11 (lb/ft)	1.65 (kg/m)	•						•	3
4014 FLAT TOP	0	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	1.29 (lb/ft)	1.92 (kg/m)	•						•	3
4090 (4.5) SIDEFLEXING FLAT TOP	13	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	1.40 (lb/ft)	6.84 (kg/m)	•							3
4091 (4.5) SIDEFLEXING FLAT TOP	0	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	1.40 (lb/ft)	6.84 (kg/m)	•						•	3
4092 (4.5) SIDEFLEXING FLAT TOP	0	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	1.61 (lb/ft)	7.86 (kg/m)	•						•	3
4090 (7.5) SIDEFLEXING FLAT TOP	0	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	1.86 (lb/ft)	2.76 (kg/m)	•						•	3
4091 (7.5) SIDEFLEXING FLAT TOP	0	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	1.84 (lb/ft)	2.73 (kg/m)	•						•	3
4092 (7.5) SIDEFLEXING FLAT TOP	0	-	Acetal	303 Stainless Steel	500 (lb)	227 (kg)	-50 to 200	-46 to 93	2.05 (lb/ft)	3.05 (kg/m)	•						•	3
	-	· · · · · · · ·		SE	RIES 9	000 - N	ominal Pitch	1.01 in. (25.)	7 mm)			'		-				
FLUSH GRID	58	-	PVDF	PVDF	1000	1490	34 to 200	1 to 93	1.57	7.64								

<sup>a. Prior to Intralox's development of Series 800 Flush Grid, Open Hinge, Perforated Flat Top, Tough Flat Top, Flush Grid Nub Top, Mesh Top, Open Hinge Cone Top, Roller Top, and Rounded Friction Top, Series 850, Series 1000, Series 1500, Series 1600, Series 1650, Series 1700, Series 1800, Series 1900, Series 2400, Series 2600, Series 2700 and Series 9000, USDA-FSIS discontinued publishing a list of acceptable new products designed for food contact. As of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
b. USDA Dairy accepted designs require the use of a clean-in-place system.</sup>

c. New Zealand Ministry of Agriculture and Forestry accepted designs require the use of a clean-in-place system.

FRICTION FACTORS

Friction Factors ^a Belt Material		F _w		ween wearstrip a arstrip material	and belt	Friction between product and belt Product material (used in backup conditions) ^b						
		UHMW WET (DRY)	HDPE WET (DRY)	NYLATRON WET (DRY)	STEEL (CS & SS) WET (DRY)	GLASS WET (DRY)	STEEL WET (DRY)	PLASTIC WET (DRY)	CARDBOARD WET (DRY)	ALUMINUM WET (DRY)		
Polypropylene (S)		0.11 (0.13)	0.09 (0.11)	0.24 (0.25)	0.26 (0.26)	0.18 (0.19)	0.26 (0.32)	0.11 (0.17)	— (0.21)	0.40 (0.40)		
Polypropylene (A	()	NR	NR	0.29 (0.30)	0.31 (0.31)	0.18 (0.19)	0.26 (0.32)	0.11 (0.17)	— (0.21)	0.40 (0.40)		
PP Composite (S	3)	0.30 (0.35)	_	_	0.31 (0.37)	0.24 (0.23)	0.36 (0.32)	0.17 (0.21)	_	0.55 (0.45)		
Polyethylene ^c (S)		0.24 (0.32)	NR	0.14 (0.13)	0.14 (0.15)	0.08 (0.09)	0.10 (0.13)	0.08 (0.08)	— (0.15)	0.20 (0.24)		
Detectable PP		0.24 (0.27)	NR	0.28 (0.29)	0.26 (0.30)	0.18 (0.20)	0.26 (0.30)	0.26 (0.29)	— (0.37)	0.40 (0.40)		
Acetal (S)		0.10 (0.10)	0.09 (0.08)	0.13 (0.15)	0.18 (0.19)	0.13 (0.14)	0.13 (0.13)	0.13 (0.16)	— (0.18)	0.33 (0.27)		
EC Acetal (S)		0.10 (0.10)	0.09 (0.08)	0.13 (0.15)	0.18 (0.19)	0.13 (0.14)	0.19 (0.20)	0.13 (0.16)	— (0.18)	0.33 (0.27)		
FR-TPES (S)		— (0.13)	_	_	_	_	— (0.18)	_	_	— (0.30)		
HR Nylon	(S)	— (0.18)	— (0.13)	— (0.17)	— (0.27)	— (0.16)	— (0.27)	— (0.16)	— (0.19)	— (0.28)		
72 °F (22 °C)	(A)	— (0.30)	— (0.25)	— (0.26)	— (0.26)	— (0.16)	— (0.27)	— (0.16)	— (0.19)	— (0.28)		
HR Nylon	(S)	NR	NR	— (0.18)	— (0.27)	— (0.19)	— (0.27)	— (0.47)	— (0.23)	— (0.25)		
Max. Temp.	(A)	NR	NR	— (0.32)	— (0.39)	— (0.19)	— (0.27)	— (0.47)	— (0.23)	— (0.25)		
AR Nylon	(S)	— (0.19)	— (0.11)	— (0.24)	— (0.31)	_	_	_	— (0.22)	— (0.31)		
Max. Temp	(A)	— (0.32)	— (0.22)	— (0.36)	— (0.30)	_	_	_	— (0.22)	— (0.31)		
UV Resistant PP		0.11 (0.13)	0.09 (0.11)	0.24 (0.25)	0.26 (0.26)	0.18 (0.19)	0.26 (0.32)	0.11 (0.17)	— (0.21)	0.40 (0.40)		
PVDF		-	-	-	0.20 (0.20)	-	0.20 (0.20)	-	-	0.15 (0.15)		
Hi-Impact		0.23 (0.21)	-	-	0.31 (0.33)	-	— (0.64)	-	-	-		
(S) = smooth, cle	an cond	litions. (A) = abra	sive, dirty condition	ons. NR = not rec	ommended.							

a. Friction factor values are highly dependent on environmental conditions. The low value of the friction factor range is an experimentally derived friction factor for new belting on new wearstrip. This value should only be used in the cleanest environments or where water or other lubricating agents are present. Most applications should be adjusted based on the environmental conditions surrounding the conveyor.

b. Friction Factors for friction between product and belt only apply for Flat Top, Perforated Flat Top, Mesh Top, Flush Grid and Raised Rib belts.

c. Polyethylene is not recommended for container handling.

GENERAL APPLICATION SPROCKET MATERIAL

ACETAL sprockets are used for most general purpose applications. This material is considerably stronger than polypropylene and polyurethane, and has a good balance of mechanical, thermal and chemical properties.

- Acetal has good fatigue endurance and resilience.
- Acetal has good non abrasive wear characteristics.
- Acetal's temperature range is -50 °F (-46 °C) to 200 °F (93 °C).
- This material is FDA compliant for use in food processing and packaging applications.

SPECIAL APPLICATION SPROCKET MATERIAL

GLASS FILLED NYLON sprockets are available for **Series** 1100, Series 1400/4000, Series 2400 and Series 900. This material is more abrasion resistant than Acetal but not as abrasion resistant as Stainless Steel. Temperature range of Glass Filled Nylon is -51 °F (-46 °C) to 151 °F (66 °C); Not chemical resistant.

GLASS FILLED NYLON SPLIT sprockets are available in **Series 900**. The glass filled nylon tooth plate is assembled with a Polypropylene joining plate that form the hub of the sprocket. Temperature range of Glass Filled Nylon is -51 °F (-46 °C) to 151 °F (66 °C). Temperature range of Polypropylene is 34 °F (1 °C) to 220 °F (104 °C). A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45 °F (7 °C).

HIGH STRENGTH POLYURETHANE COMPOSITE

SPLIT sprockets are available in Series 400. The Polyurethane Composite Split sprocket consists of one polyurethane composite tooth plate assembled between Polypropylene joining plates that form the hub of the sprocket. The temperature range for Polyurethane Composite is -50 °F (-46 °C) to 240 °F (116 °C). It is recommended for Drive Shaft only. The sprocket is split into two pieces for easy assembly onto and off the shaft. A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45 °F (7 °C).

POLYETHYLENE sprockets are available for the Series 3000 and some Series 2600 sprockets.

Note: Not all sprocket pitch diameters, bore sizes and material combinations are available in all series. Those that are available can either be stocked or made to order. Contact Intralox Customer Service for availability and lead-times (some available combinations may be long lead-time items).

POLYPROPYLENE sprockets are used for applications where chemical resistance may be required.

- Polypropylene has good chemical resistance to many acids, bases, salts and alcohols.
- Polypropylene's temperature range is 34 °F (1 °C) to 220 °F (104 °C).
- A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45 °F
- This material is FDA compliant for use in food processing and packaging applications.
- Contact Intralox Customer Service for polypropylene sprocket availability.

POLYPROPYLENE COMPOSITE, is a standard material for use in applications where both high strength and chemical resistance may be required.

- Excellent strength and stiffness.
- Specific gravity of 1.12.
- Good chemical resistance to acids, bases, salts and alcohol.
- Temperature range is -20 °F (-29 °C) to 220 °F (104 °C).
- The thermal expansion coefficient is 0.0004 in/ft/ °F (0.06 mm/m/°C).

POLYURETHANE sprockets are used for applications where abrasive wear is common.

- Polyurethane's temperature range is 0 °F (-18 °C) to 120 °F (49 °C). Polyurethane becomes soft and flexible at high temperatures and has good chemical resistance.
- Series 800, 1600, 2200, and 2400 have a lower rating when using polyurethane sprockets. Refer to the individual belt data pages for these ratings.
- Polyurethane sprockets are only available in **Series 100**, 200, 400 and 800. Contact Intralox Customer Service for availability.

POLYURETHANE COMPOSITE sprockets are standard in Series 1200 and one size in Series 1400 (31 Tooth). This material is extremely rigid and can handle a large range of chemicals and temperatures. The temperature range for Polyurethane Composite is -50 °F (-46 °C) to 240 °F (116 °C).

STAINLESS STEEL split sprockets are used for applications with abrasive wear or when shaft removal is not practical. There are two types of stainless steel sprockets. The all-metal Abrasion Resistant sprockets are available in a number of Series and Pitch Diameters. The Stainless Steel Split consists of 1 to 3 stainless steel tooth plates assembled between polypropylene joining plates that form the hub of the sprocket.

- The sprocket is split into two pieces for easy assembly onto and off of a shaft.
- Stainless steel split sprockets have good chemical resistance.
- Polypropylene's temperature range is 34 °F (1 °C) to 220 °F (104 °C).
- A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45 °F (7 °C).

- These materials are FDA compliant for use in food processing and packaging applications.
- These sprockets are built standard with 304 stainless steel plates and can be specially ordered with 316 stainless steel plates.
- Contact Intralox Customer Service for availability.

ULTRA ABRASION RESISTANT POLYURETHANE

sprockets are available for Series 400 and Series 1700.

- For abrasive, heavy-duty applications.
- For non-FDA applications.
- Temperature range -40 °F to 160 °F (-40 °C to 70 °C).
- Series 400 has a lower rating when using ultra abrasion resistant polyurethane sprockets.

SPROCKET MATERIAL AVAILABILITY

The chart below lists the materials available for each Intralox sprocket by Series and Pitch Diameter. It should be noted that not all sprockets of each pitch diameter are available in all listed materials. A material which is available for certain bore types and/or bore sizes may not be available for other bore types and/or bore sizes of the same Series and Pitch Diameter

sprocket. Sprockets can be either stocked or made to order, and may have long lead-times. Lead-times vary by sprocket. Some make to order sprockets may also have set up charges. Contact Intralox Customer Service for specific lead-times and availability.

All Intralox sprockets or classified either as stock as make to order items.	GENERAL PURPOSE SPECIAL APPLICATIONS MATERIALS MATERIALS										
make to order items may special set-up charges Customer Service for prici times and availabili	Acetal	Polypropylene	Split Metal	Abrasion Resistant Metal	Polyurethane	Glass Filled Nylon	Polyethylene	Polyurethane Composite	Ultra Abrasion Resistant Polyurethane	Polypropylene Composite	
PITCH DIAMETER in (mm)	NO. TEETH										
SERIES 100											
2.0 (51)	6	•	•								
3.5 (89)	11	•	•	•		•					
6.1 (155)	19	•	•	•		•					
SERIES 200											
4.0 (102)	6	•	•			•					
6.4 (163)	10	•	•		•	•					
10.1 (257)	16	•	•		•						
SERIES 400											
4.0 (102)	6	•	•	•		•					
5.2 (132)	8	•	•	•							
5.8 (147)	9			•a							
6.4 (163)	10	•	•	•	•				•	•	
7.8 (198)	12	•	•	•	•				•	•	
8.4 (213)	13			•a							
10.1 (257)	16	•	•	•					•	•	
SERIES 800											
4.0 (102)	6	•	•			•					
5.2 (132)	8	•	•	•p		•					
6.5 (165)	10	•	•	•p		•					
7.7 (196)	12	•	•	•b		•					
10.3 (262)	16	•	•	•p							
SERIES 850											
4.0 (102)	6	•	•			•					
5.2 (132)	8	•	•	•b		•					

All Intralox sprockets or classified either as stock as make to order items.	GENERAL PURPOSE SPECIAL APPLICATIONS MATERIALS MATERIALS										
make to order items may special set-up charges Customer Service for prici times and availabili	Acetal	Polypropylene	Split Metal	Abrasion Resistant Metal	Polyurethane	Glass Filled Nylon	Polyethylene	Polyurethane Composite	Ultra Abrasion Resistant Polyurethane	Polypropylene Composite	
PITCH DIAMETER in (mm) NO. TEETH											
6.5 (165)	10	•	•	•b		•					
7.7 (196)	12	•	•	•b		•					
10.3 (262)	16	•	•	•b							
SERIES 900											
2.1 (53)	6	•	•								
3.1 (79)	9	•	•								
3.5 (89)	10	•	•	•							
4.1 (104)	12	•	•	•	•	•					
5.1 (130)	15			•			•				
5.8 (147)	17	•	•	•	•	_	•				
6.1 (155) 6.8 (173)	18 20	•	•	•	•	•	•				
9.6 (244)	28	-		•	-		-				
SERIES 1000											
3.1 (79)	16	•									
4.6 (117)	24	•									
6.1 (155)	32	•									
SERIES 1100											
1.6 (41)	8				•						
2.3 (58) 3.1 (79)	12 16	•	•		•						
3.5 (89)	18	•	<u> </u>								
3.8 (97)	20	•	•								
4.6 (117)	24	•	•				•				
5.1 (130)	26	•	•	•							
6.1 (155)	32	•	•	•			•				
SERIES 1200											
5.6 (142)	12			•							
6.5(165)	14 16			•					•		
7.4 (188) 7.9 (201)	17								•		
10.2 (258)	22								•		
SERIES 1400											
3.9 (99)	12	•									
5.1 (130)	16						•				
5.7 (145)	18	•					•				•
6.7 (170)	21						•				•
7.7 (196) 9.9 (251)	24 31	•							•		
SERIES 1500	31								•		
1.9 (48)	12	•									
2.3 (58)	14	•									
2.7 (69)	17	•									
3.8 (97)	24	•									
5.7 (145)	36	•									
SERIES 1600											
2.0 (51) 3.2 (81)	6 10	•			-	•					
3.2 (81)	10	•				•					
6.4 (163)	20	•									
SERIES 1650											
2.0 (51)	6	•									
3.2 (81)	10	•									

All Intralox sprockets can be		GENERAL APPLICATIONS MATERIALS										
classified either as stock as make to order items.	PURPOSE MATERIALS											
make to order items.		MATERIALS		1			1 _	1		ı	<u> </u>	
special set-up charges			O		ant a	0	<u> </u>		0		Φ	
Customer Service for prici		_	<u>e</u>	<u>a</u>	Sist	ane	Ž	ene	an ite	sio nt and	ite le	
times and availabilit) stal	ğ	Ĭ Z	on Res Metal	eth	eq	Ž	eth	ora stal eth	do soo	
	•	Acetal	ρď	Split Metal	e §	į	≣	yet	olyurethan	tra Abrasic Resistant olyurethan	olypropylen Composite	
		_	Polypropylene	တိ	asi	Polyurethane	Glass Filled Nylon	Polyethylene	Polyurethane Composite	Ultra Abrasion Resistant Polyurethane	Polypropylene Composite	
			ъ.		Abrasion Resistant Metal	_	G _a	_	_	> "		
PITCH DIAMETER in (mm)	NO.											
,	TEETH											
3.9 (99)	12	•										
6.4 (163)	20	•										
SERIES 1700												
5.8 (147)	12									•		
6.7 (170)	14									•		
7.7 (196)	16									•		
10.5 (267)	22									•		
SERIES 1800												
5.0 (127)	6	•										
6.5 (165)	8	•										
8.1 (206)	10	•										
10.5 (267)	13	•										
SERIES 1900												
6.7 (170)	10			•								
10.0 (254)	15			•								
10.6 (269)	16			•								
SERIES 2200												
3.9 (99)	8	•	•									
5.3 (135)	11	•	•			•						
6.3 (160)	13	•	•									
7.7 (196)	16	•	•									
SERIES 2400												
2.0 (51)	6	•										
2.9 (74)	9	•										
3.9 (99)	12	•	•			•	•					
5.1 (130)	16	•	•			•	•					
6.4 (163)	20	•	•				•					
SERIES 2600												
5.2 (132)	8	•						•				
6.5 (165)	10	•						•				
SERIES 2700												
5.2 (132)	8	•										
6.5 (165)	10	•										
SERIES 3000												
5.2 (132)	8							•				
6.5 (165)	10							•				
7.7 (196)	12							•				
SERIES 4000												
3.9 (99)	12	•										
5.1 (130)	16						•					
5.7 (145)	18	•					•					
6.7 (170)	21						•					
9.9 (251)	31								•			
SERIES 9000												
6.5 (164)	20											
8.1 (205)	25											

a. For use with Series 400 Flush Grid Acetal and EC Acetal only.b. Available in three plate, Abrasion Resistant split design.

BELT SELECTION INSTRUCTIONS

To determine if this belt is suitable for your application, its OPERATING LOAD versus OPERATING STRENGTH must be known. The following steps will assist you in making the necessary calculations for this comparison:

STEP 1: CALCULATE THE BELT'S TENSION LOAD OR BELT PULL, BP, lb/ft (kg/m)

 $BP = [(M + 2W) \times Fw + M_p] \times L + (M \times H)$

where:

М Product Loading, lb/ft² (kg/m²)

W Belt Weight, lb/ft² (kg/m²) (found on BELT DATA

L Length of Conveyor, ft. (m), C to C

= Elevation Change of Conveyor, ft. (m) Н

= Wearstrip to Belt Friction Coefficient

Mp $\mathbf{M} \times (\mathbf{F}_{\mathbf{p}} \times \% \text{ Belt Backed-Up})$, loading due to backed up product

Obtain F_{w} and F_{p} from BELT DATA page of the belt style you are considering. If products are not backed up on belt, ignore **M**_n.

STEP 2: ADJUST THE CALCULATED BP FOR SPECIFIC SERVICE CONDITIONS

Since the belt may experience a variety of conditions, the **BP** should be adjusted by applying an appropriate SERVICE FACTOR, SF.

Determine **SF**:

SERVICE FACTOR (SF)							
Starts under no load, with load applied gradually	/	1.0						
Frequent starts under load (more than once per hour)	ADD 0.2							
At speeds greater than 100 FPM (Feet Per Minute) (30 meters/min)	ADD 0.2							
Elevating Conveyors	ADD 0.4							
Pusher Conveyors	ADD 0.2							
	TOTAL							
Notes At a seed a seed of the CO EDM (45 and a feed of a)								

Note: At speeds greater than 50 FPM (15 meters/min) on conveyors that are started with backed-up lines, soft start motors should be considered.

The **ADJUSTED BELT PULL**, **ABP**, is determined by:

 $ABP = BP \times SF$

For Bi-Directional and Pusher Conveyors:

 $ABP = BP \times SF \times 2.2$

where:

ABP= ADJUSTED BELT PULL, lb/ft (kg/m) of belt width

STEP 3: CALCULATE ALLOWABLE BELT STRENGTH, ABS lb/ft (kg/m) of belt width

the **DRIVE SHAFT DEFLECTION** and **TORQUE** must be determined to insure an adequate shaft selection.

The ALLOWABLE BELT STRENGTH may, because of specific operating conditions, be less than the **RATED BELT STRENGTH** shown on the **BELT DATA** page. Therefore, the **ABS** should be calculated from:

 $ABS = BS \times T \times S$

where:

S

BS = **BELT STRENGTH** from BELT DATA page.

Ť = **TEMPERATURE FACTOR** from page 21.

STRENGTH FACTOR from BELT DATA page. The **STRENGTH FACTOR** is found at the intersection of the SPEED/LENGTH RATIO and the appropriate sprocket line. To get the **SPEED**/ **LENGTH RATIO**, divide the belt speed (ft/min) by the shaft \subsetneq distance (ft). The **STRENGTH FACTOR** adjusts the belt rating to account for wear caused by the combination of high speed, short conveyor lengths and small sprocket sizes.

STEP 4: COMPARE ABP WITH ABS

If the **ABS** exceeds **ABP**, this belt is strong enough for your application. You should proceed to the next steps to determine DRIVE SHAFT SPROCKET SPACING, SHAFT STRENGTH and HORSEPOWER REQUIRED.

If the **ABS** is less than **ABP** and you are able to change some parameters of your application (i.e., product load distribution or belt speed), the recalculated **ABP** may become acceptable.

STEP 5: DETERMINE MAXIMUM SPACING OF DRIVE SHAFT SPROCKETS

The percentage of ALLOWABLE BELT STRENGTH **UTILIZED**, **ABSU**, is determined by:

 $ABSU = (ABP \div ABS) \times 100\%$

Using the ABSU, find the maximum sprocket spacing from the graph on the SPROCKET DATA page of the Series you are considering. The spacing of sprockets on idler shafts may, under some circumstances, be greater than drive spacing, but should never exceed 6.0 in. (152 mm) for all Series (except **Series 200** where maximum spacing should never exceed 7.5 in. [191 mm]).

If the calculated ABSU is above 75%, please contact Intralox Customer Service Sales Engineering to run the Intralox Engineering Program and verify your results.

STEP 6: CONFIRM DRIVE SHAFT STRENGTH

Drive shafts must be stiff enough to resist excessive bending or deflecting under the belt's pull and strong enough to transmit the required torque from the driver. Therefore, both

PRODUCT LINE

Select a shaft size which fits your sprocket of choice from the **SPROCKET DATA** page.

Note: Most sprockets have more than one available bore size.

The shaft deflects under the combined loads of the **ADJUSTED BELT PULL** and its own **WEIGHT**. The **TOTAL SHAFT LOAD**, **w**, is found from:

$$w = (ABP + Q) \times B$$

where:

Q = SHAFT WEIGHT, lb/ft (kg/m), from SHAFT

DATA table

B = BELT WIDTH, ft. (m)

For shafts supported by two bearings, the **DEFLECTION**, **D**, is calculated from:

$$D = \frac{5}{384} \times \frac{w \times L_S^3}{E \times I}$$

where:

Ls = LENGTH OF SHAFT between bearings, in.

(mm)

E = MODULUS OF ELASTICITY from "Table 8 SHAFT DATA" (page 351).

I = MOMENT OF INERTIA from "Table 8 SHAFT DATA" (page 351).

Note: For shafts supported by three bearings, see "DEFLECTIONS WITH INTERMEDIATE BEARINGS" (page 342).

If the calculated deflection is less than the recommended maximum of 0.10 in. (2.5 mm) for standard conveyors or 0.22 in. (5.6 mm) for bi-directional units, calculate the required **TORQUE**. If not, use a larger size shaft, a stronger material or a shorter span between bearings, and recalculate the deflection.

The **TORQUE**, **T**_o, to be transmitted is determined from:

$$T_o = ABP \times B \times \frac{PD}{2}$$

where:

PD = PITCH DIAMETER OF SPROCKET from the SPROCKET DATA PAGE

Now compare $\mathbf{T_o}$ with the "Table 9 MAXIMUM RECOMMENDED TORQUE ON DRIVE SHAFT" (page 351), for shaft journal sizes shown. Using a journal diameter which can be machined on the shaft selected, determine its maximum recommended torque. This value should exceed $\mathbf{T_o}$. If not, try a stronger material or larger shaft.

STEP 7: DETERMINE THE **POWER** NEEDED TO DRIVE THE BELT

DRIVE HORSEPOWER, **HP**, is found from:

$$HP = \frac{ABP \times B \times V}{33000}$$

where:

ABP = ADJUSTED BELT PULL, lb/ft of belt width

B = BELT WIDTH, ft.V = BELT SPEED, ft/min

POWER in **WATTS** is found from:

WATTS =
$$\frac{ABP \times B \times V}{6.12}$$
1 HP = 745.7 WATTS

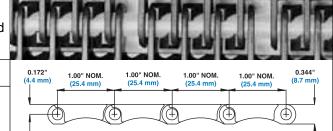
where:

ABP = ADJUSTED BELT PULL, lb/ft of belt width

B = BELT WIDTH, ft.V = BELT SPEED, ft/min

To obtain the required **motor** power you should add expected power losses in the drive train between drive shaft and motor to the calculated **POWER**. See "Section three: Design guidelines" (page 317), for recommendations.

Having determined the suitability of this belt, the sprocket spacing, the drive shaft size and the power requirements, you are now ready to select **ACCESSORIES** and to design the conveyor assembly.

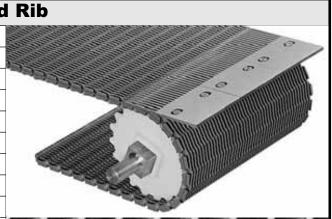


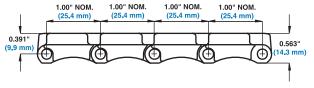
		Flush	Grid
	in.	mm	
Pitch	1.00	25.4	
Minimum Width	1.5	38	
Width Increments	0.25	6.4	
Opening Size (approximate)	0.2 × 0.2	5 × 5	
Open Area	31	%	
Hinge Style	Ор	en	
Drive Method	Center	-driven	
Product	Notes		10
Always check with Custom	er Service for	precise belt	10

- width measurement and stock status before designing a conveyor or ordering a belt.
- · Lightweight, relatively strong belt with smooth upper surface.
- Smaller pitch reduces chordal action and transfer dead plate gap.
- For more material selections and stronger belt performance, see Series 900 and Series 1100 Flush Grid styles.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

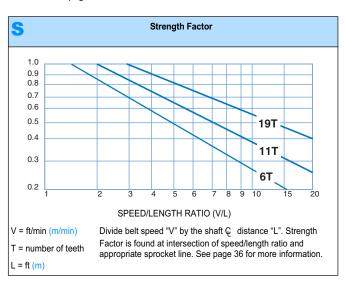
	Belt Data													
Belt Material	Standard Rod Material	BS Belt Temperature Range Weight 1:					Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey					у		
	Ø 0.18 in. (4.6 mm)		kg/m	°F	°C	lb/ft²	kg/m²		USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.54	2.64	•	•		•		3	•
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.58	2.83	•	•		•		3	•
Acetal	Polypropylene	600	890	34 to 200	1 to 93	0.78	3.81	•	•		•		3	•
EC Acetal	Polypropylene	400	595	34 to 200	1 to 93	0.78	3.81							
Acetal ^f	Polyethylene	550	820	-50 to 70	-46 to 21	0.78	3.81	•	•		•		3	•

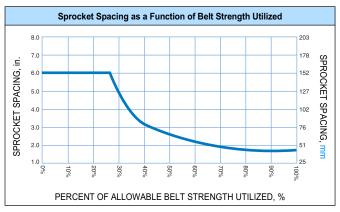

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.


		Raised
	in.	mm
Pitch	1.00	25.4
Minimum Width	1.5	38
Width Increments	0.25	6.4
Opening Size (approximate)	0.2 × 0.2	5 × 5
Open Area	31	%
Product Contact Area	28	%
Hinge Style	Ор	en
Drive Method	Center	-driven

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth upper surface with closely spaced ribs can be used with Finger Transfer Plates, eliminating product tippage and hang-ups.
- For more material selections and stronger belt performance, see Series 900 Raised Rib.

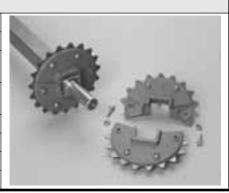
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


	Belt Data													
Belt Material	iviateriai		Belt Strength Temperature Range (continuous)				Belt Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=				-Gre	y		
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.82	4.00	•	•		•		3	•
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.88	4.29	•	•		•		3	•
Acetal	Polypropylene	600	890	34 to 200	1 to 93	1.20	5.86	•	•		•		3	•
Acetal ^f	Polyethylene	550	820	-50 to 70	-46 to 21	1.20	5.86	•	•		•		3	•


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- f. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

Belt Wid	th Range ^a	Minimum Number of		Wearstrips
n.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	2	3	2
12	305	3	3	2
14	356	3	4	3
15	381	3	4	3
16	406	3	4	3
18	457	3	4	3
20	508	5	5	3
24	610	5	5	3
30	762	5	6	4
32	813	7	7	4
36	914	7	7	4
12	1067	7	8	5
18	1219	9	9	5
54	1372	9	10	6
80	1524	11	11	6
72	1829	13	13	7
34	2134	15	15	8
96	2438	17	17	9
20	3048	21	21	11
44	3658	25	25	13

- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.25 in. (6.4 mm) increments beginning with minimum width of 1.5 in. (38 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.

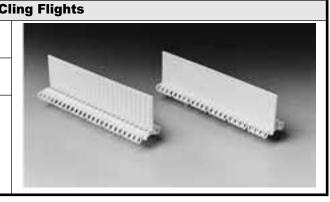


	Sprocket Data											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ļ ,	Available E	Bore Size	s	2	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	U.S. Sizes Metric Sizes		Sizes		
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm		
6 (13.40%)	2.0	51	2.1	53	0.75	19		1.0				
11	3.5	89	3.7	94	0.75	19		1.0		40		
(4.05%)								1.5				
19	6.1	155	6.3	160	1.25	32		1.5		40	3	
(1.36%)								2.5		60	1 - Pitch diameter	
											2 - Outer diameter	
											3 - Hub width	

							Split	Sproc	kets	
No. of	Nom.	Nom.	Nom.	lom. Nom. Nom. Nom. Available Bore Sizes					s	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Hub Dia. Width		Hub Width	U.S. Sizes		Metric	Sizes
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
11 (4.05%)	3.5	89	3.7	94	1.5	38		1.5		40
19	6.1	155	6.3	160	1.5	38		1.5		40
(1.36%)								2.5		60
										65

Streamline/No-0				
Available Materials	Available Flight Height			
Available Materials	mm	in.		
Polypropylene, Polyethylene, Acetal	38	1.5		
Folypropylerie, Folyetifylerie, Acetai				

Note: Flights can be cut down to any height required for a particular application.


Note: No fasteners are required.

Note: One side of the flight is smooth (Streamline) while the other is ribbed

vertically (No-Cling).

Note: Flights can be provided in linear increments of 1 in. (25 mm).

Note: The minimum indent (without sideguards) is 0.5 in. (13 mm).

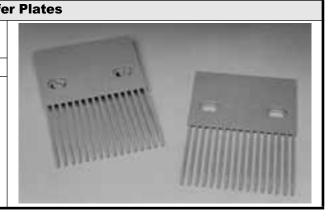
	Sidegu								
Availab	le Sizes	Available Materials							
in.	mm	Available Materials							
2	51	Polypropylene, Polyethylene, Acetal							

Note: Sideguards are used with Flush Grid belts to assure product containment, they are of the standard overlapping design, and are an integral part of the belt, fastened by the hinge rods.

Note: The minimum indent is 0.75 in. (19 mm).

Note: The standard gap between the sideguards and the edge of a flight is 0.06 in. (2 mm).

Note: When going around the 6 and 11 tooth sprockets, the sideguards will fan out, opening a gap at the top of the sideguard which might allow small products to fall out. The sideguards stay completely closed when wrapping around the 19 tooth sprocket.

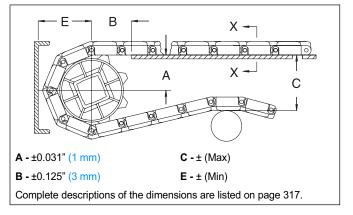

			Finger Transfe
Available	e Widths	Number of	Available Materials
in.	mm	Fingers	
4	102	16	Acetal

Note: Designed to be used with Series 100 Raised Rib belts to eliminate product transfer and tipping problems.

Note: The fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Finger Transfer Plates are installed easily on the conveyor frame with

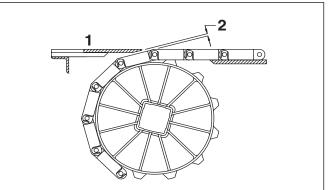
conventional fasteners.



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Sprocket Description		Α		В		С		E		
Pitch E	Diameter	No. Teeth	Range (Bottom to Top)		in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	"".		111.		111.	mm
	SERIES 100 FLUSH GRID									
2.0	51	6	0.69-0.83	18-21	1.30	33	2.10	53	1.24	31
3.5	89	11	1.53-1.60	39-41	1.70	43	3.60	91	2.01	51
6.1	155	19	2.82-2.87	72-73	2.20	56	6.20	157	3.30	84
			SERIE	S 100 RAISE	D RIB	•				
2.0	51	6	0.69-0.83	18-21	1.30	33	2.10	53	1.45	37
3.5	89	11	1.53-1.60	39-41	1.70	43	3.60	91	2.23	57
6.1	155	19	2.82-2.87	72-73	2.20	56	6.20	157	3.52	89

Dead Plate Gap

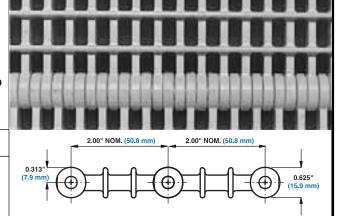
Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

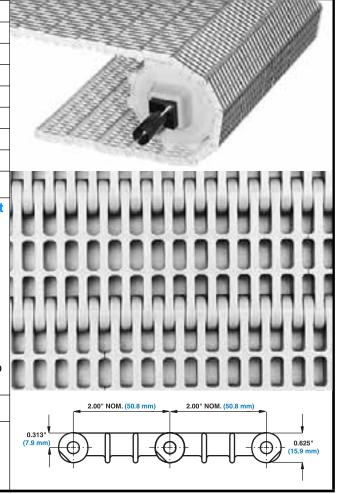

	Sprocket Descriptio	Gap			
Pitch D	iameter	No. Teeth	in.	mm	
in.	mm	No. reem			
2.0	51	6	0.134	3.4	
3.5	89	11	0.073	1.9	
6.1	155	19	0.041	1.0	

		Open	Grid
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	2.00
Width Increments	0.36	9.1	
Opening Size (approximate)	0.23 × 0.48	5.8 × 12.3	
Open Area	33	%	
Hinge Style	Clos	sed	
Drive Method	Hinge-	driven	
Product	Notes		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Low profile transverse ridges assist in moving products up or down inclines.
- Flights and sideguards are available.
- Large, open area allows excellent drainage.
- Series 200 Open Grid has double-headed hinge rods so the belt edge is not fully flush.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	1	Age =White, 2=	ncy Acce =Blue, 3=	•	•	=Gre	y
	Ø 0.240 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Z ^d	Je	EU MC ^f
Polypropylene	Polypropylene	1400	2080	34 to 220	1 to 104	1.24	6.05	•					3	•
Polyethylene	Polyethylene	900	1340	-100 to 150	-73 to 66	1.26	6.15	•					3	•

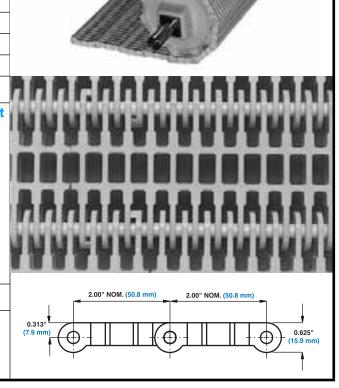

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
- e. Japan Ministry of Health, Labour, and Welfare
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Flush	Grid
	in.	mm	
Pitch	2.00	50.8	4
Minimum Width	2	51	
Width Increments	0.36	9.1	
Opening Size (approximate)	0.22 × 0.49	5.5 × 12.5	
Open Area	33	%	1
Hinge Style	Clo	sed	0
Drive Method	Hinge-	driven	
Product	Notes		5.5

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Flush grid pattern with smooth upper surface.
- Offers excellent lateral movement of containers.
- One of the strongest belt styles in Series 200.
- · Flights and sideguards are available.
- For an alternative to Series 200 Flush Grid with more material selections, see Series 400, Series 900, Series 1100 and Series 2200 belt styles.
- Series 200 Flush Grid has double-headed hinge rods so the belt edge is not fully flush.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1	Aç =White,	gency Ac 2=Blue,	•	•	-Gre	у
	Ø 0.240 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
Polypropylene	Polypropylene	1800	2680	34 to 220	1 to 104	1.40	6.83	•				3		•
Polyethylene	Polyethylene	1200	1790	-100 to 150	-73 to 66	1.44	7.03	•				3		•

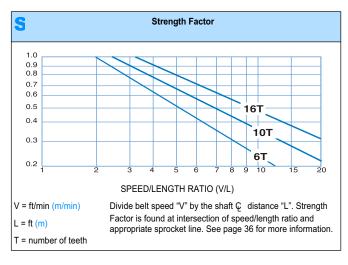

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

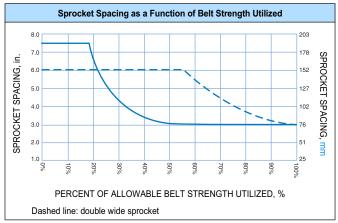
		Open F	linge
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	COLUMN TO A STATE OF THE PARTY
Width Increments	0.36	9.1	
Opening Size (approximate)	0.26 × 0.48	6.7 × 12.3	
Open Area	45	%	
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	
D., 4	Nata		10 mm

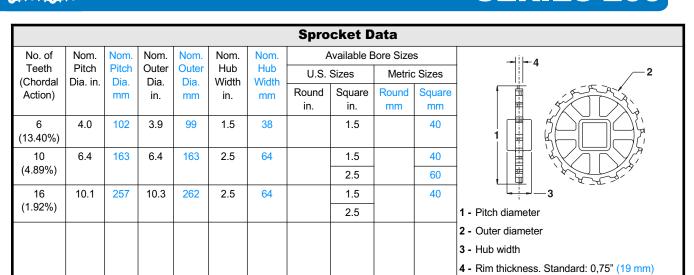
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth surface and generous open area for food handling.
- Ideal where air cooling, washing or drying is required.
- Flights and sideguards are available.
- For stronger belt performance, see Series 400 Open Hinge.
- Series 200 Open Hinge has double-headed hinge rods so the belt edge is not fully flush.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

					Belt Data	3								
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1	A(=White,	gency Ac 2=Blue,		-	Gre	y
	Ø 0.240 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	Ac	J ^d	EU MC ^e
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	1.04	5.08	•	•	1	•		3	•
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	1.12	5.47	•	•	3	•		3	•

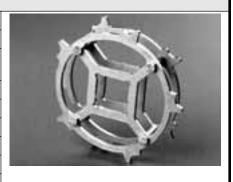

- USDA Dairy acceptance requires the use of a clean-in-place-system.


- b. Canada Food Inspection Agency
 c. Australian Quarantine Inspection Service
 d. Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Sprocket a	nd Support Quantity Refere	ence
Belt Wid	Ith Range ^a	Minimum Number of	V	Vearstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
15	381	3	3	3
16	406	3	3	3
18	457	3	3	3
20	508	3	4	3
24	610	5	4	3
30	762	5	5	4
32	813	5	5	4
36	914	5	5	4
42	1067	7	6	5
48	1219	7	7	5
54	1372	9	7	6
60	1524	9	8	6
72	1829	11	9	7
84	2134	13	11	8
96	2438	13	12	9
120	3048	17	15	11
144	3658	21	17	13
		dd Number of Sprockets ^c at 191 mm) Ç Spacing	Maximum 9 in. (229 mm) Ç Spacing	Maximum 12 in. (305 mm) Ç Spacing

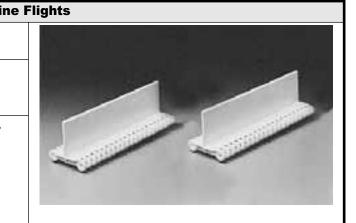
- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.36 in. (9.1 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.



						Doul	ole Wid	le Rim	Sproc	kets	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	S	 4
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	and 12
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round	Square	Round	Square	
							in.	in.	mm	mm	▎ ▎▞ ▍ ▎
10 (4.89%)	6.4	163	6.4	163	2.5	64		1.5		40	
											一十二 をみ
											3
											1 - Pitch diameter
											2 - Outer diameter
											3 - Hub width
											4 - Rim thickness. Double wide: 1.5" (38 mm)

						Abras	ion Re	sistan	t Spro	ckets
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
10	6.4	163	6.4	163	1.1	28		1.5		40
(4.89%)								2.5		60
16	10.1	257	10.3	262	1.1	28		1.5		40
(1.92%)								2.5		60
										65

intralox



Streamli						
Available Materials	Available Flight Height					
Available Waterials	mm	in.				
	25	1				
Polypropylene, Polyethylene	51	2				
	76	3				

Note: Each flight rises out of the center of its supporting Flat Top module, molded as an integral part. No fasteners are required.

Note: Can be enlarged to 6 in. (152 mm) high with a welded extension. **Note:** An extension can be welded at a 45° angle to create a bent flight. Contact Customer Service for availability.

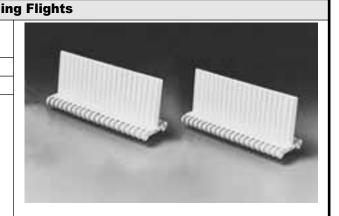
Note: The minimum indent (without sideguards) is 0.7 in. (18 mm). **Note:** Flights can be cut down to any height required for a particular application.

		Double No-Cli
Available F	light Height	Available Materials
in.	mm	Available Materials
3	76	Polypropylene, Polyethylene

Note: Each flight rises out of the center of its supporting Flat Top module, molded as an integral part. No fasteners are required.

Note: Vertically ribbed for product release.

Note: Can be enlarged to 6 in. (152 mm) high with a welded extension.


Note: An extension can be welded at a 45° angle to create a bent flight.

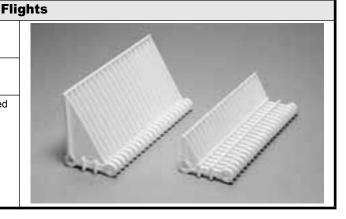
Contact Customer Service for availability.

Note: The minimum indent (without sideguards) is 0.7 in. (18 mm).

Note: Flights can be cut down to any height required for a particular

application.

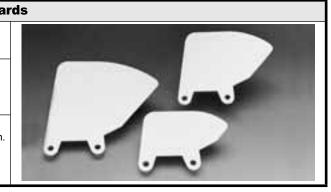
Ribbed		
Available Materials	light Height	Available F
Available Materials	mm	in.
Polypropylene, Polyethylene	32	1.25
Folypropyrene, Folyethyrene	76	3
-		


Note: Each flight rises out of Open Grid modules and have triangular shaped buttresses on the back side. No fasteners are required.

Note: Can be enlarged to 6 in. (152 mm) high with a welded extension.

Note: The minimum indent (without sideguards) is 0.7 in. (18 mm).

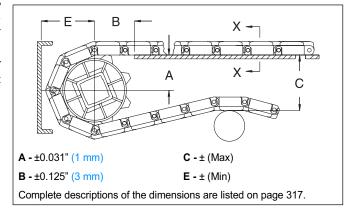
Note: Flights can be cut down to any height required for a particular


application.

		Sidegua					
Availab	le Sizes	Available Materials					
in.	mm	Available ivialerials					
2	51						
3	76	Polypropylene, Polyethylene					
4	102						

Note: The minimum indent is 0.7 in. (18 mm).

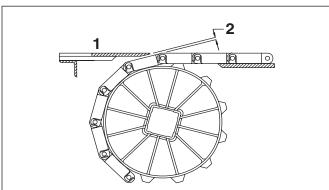
Note: The normal gap between the sideguards and the edge of a flight is 0.3 in. (8 mm).



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Spr	Sprocket Description		Α	E	3	(;	I		
Pitch D	Diameter	No. Teeth	Range (Bottor	m to Top)	in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	111.	111111	111.	111111	111.	mm
		SEF	RIES 200 FLUSH (GRID, OPEN	GRID, O	PEN HI	NGE			
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.38	60
6.4	163	10	2.77-2.92	70-74	3.00	76	6.50	165	3.61	92
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.50	140

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

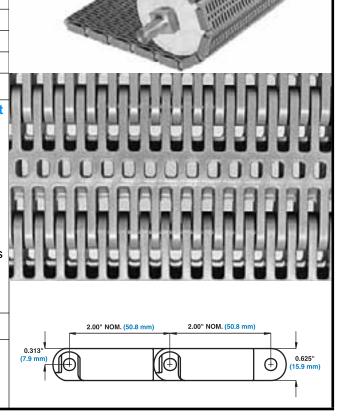
In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Gap				
Pitch D	Diameter	No. Teeth	in.	mm		
in.	mm	No. recui				
4.0	102	6	0.268	6.8		
6.4	163	10	0.160	4.1		
10.1	257	16	0.100	2.5		



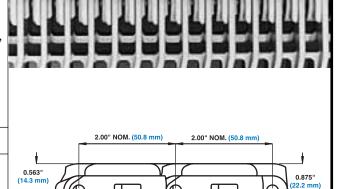
		Flush	Grid
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.25 × 0.18	6.4 × 4.6	
Open Area	17	%	
Hinge Style	Clo	sed	
Drive Method	Center	-driven	
	` .		311 (30

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth upper surface and straightforward design provides free product movement.
- Flights and Sideguards are available.
- Series 400 Flush Grid is available with SLIDELOX® rod retention for belts 6.0 ft. (1829 mm) wide and wider. All Series 400 Flush Grid with Abrasion Resistant rods are available with SLIDELOX® rod retention. All other Series 400 Flush Grid belts use the standard headed rods.
- Series 400 Flush Grid in Acetal and EC Acetal must be used with metal split sprockets only.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material							Belt Agency Acceptability: Weight 1=White, 2=Blue, 3=Natural, 4=Gre						
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	Jc	A ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.82	8.89	•			3			•
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28	•			3			•
Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.77	13.51	•			3			•
Acetal ^g	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.77	13.51	•			3			•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Japan Ministry of Health, Labour, and Welfare
- d. Australian Quarantine Inspection Service
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- g. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.



		Raise	d Rib
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	See b	olow	-
Width Increments	3ee b	eiow.	
Opening Size (approximate)	0.25 × 0.24	6.4 × 6.1	
Open Area	26	%	- 4
Product Contact Area	36	%	1
Hinge Style	Clos	sed	-
Drive Method	Center	-driven	
	·		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Raised Ribs extend 0.25 in. (6.4 mm) above basic module.
- Use with Finger Transfer Plates to virtually eliminate tippage at in-feed and discharge.
- Custom-built in widths from 2 in. (51 mm) and up for polyethylene and 3 in. (76 mm) and up for polypropylene, in 0.33 in. (8.4 mm) increments.
- All Series 400 Raised Rib polypropylene belts use the SLIDELOX® rod retention system. Series 400 Raised Rib polyethylene belts use the standard headed rods.
- SLIDELOX® is glass reinforced polypropylene.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength							Agency Acceptability: e, 2=Blue, 3=Natural, 4=Grey					
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f	
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.95	9.52	•				3		•	
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.98	9.67	•				3		•	
Enduralox Polypropylene	Polyethylene	2400	3570	34 to 220	1 to 104	1.95	9.52	•						•	

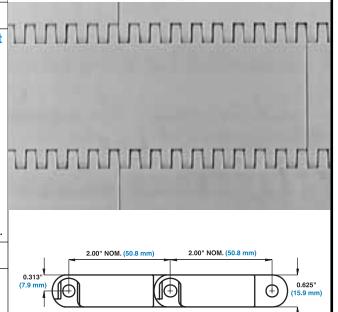
- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Open H	linge
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.25	6.4	The second secon
Opening Size (approximate)	0.47 × 0.18	11.9 × 4.6	
Open Area	30	%	#S3205//#
Product Contact Area	40	%	
Hinge Style	Ор	en	
Drive Method	Center	-driven	- Contraction
Product	Notes		A A A A A A A A A A A A A A A A A A A
 Always check with Custome width measurement and stord designing a conveyor or or shares heavy-duty rating with Large, open area improves a cleanability. Flights and Sideguards are as Series 400 Open Hinge has a so the belt edge is not fully flowed. 	dering a belt. In other belts in ir flow, drainage vailable. double-headed	this series. e and	
Additional lu	nformation	on	2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm)
 See "Belt selection process" See "Standard belt materials See "Special application belt 	" (page 18)	0.313° (7.9 mm)	

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1	Aç =White,		ceptabili 3=Natura	•	-Gre	у
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e
Polypropylene	Polypropylene	1550	2300	34 to 220	1 to 104	1.16	5.66	•	•		•		3	•
Polyethylene	Polyethylene	950	1400	-50 to 150	-46 to 66	1.24	6.06	•	•		•		3	•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
 Australian Quarantine Inspection Service

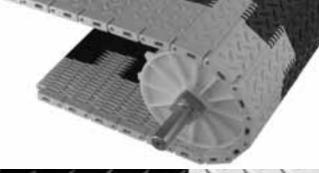
See "Friction factors" (page 31)


- d. Japan Ministry of Health, Labour, and Welfare
 e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

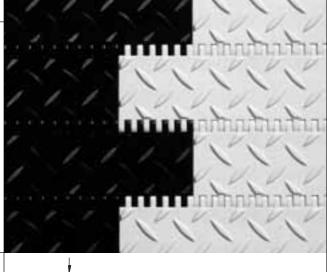
		Flat 1	Гор				
	in.	mm	9				
Pitch	2.00	50.8					
Minimum Width	2	51	-				
Width Increments	0.33	8.4					
Opening Size (approximate)	-	-					
Open Area	0,	%					
Hinge Style	Closed						
Drive Method	Center	-driven	1				
	B. 4						

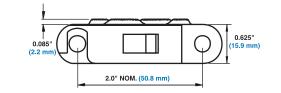
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth upper surface and straightforward design provides free product movement.
- Flights and Sideguards are available.
- It is recommended that Abrasion Resistant Split Sprockets be used with Series 400 Flat Top in Acetal.
- Series 400 Flat Top is available with SLIDELOX® rod retention for belts 6.0 ft. (1829 mm) wide and wider. All Series 400 Flat Top with Abrasion Resistant Rods are available with SLIDELOX® Rod Retention. All other Series 400 Flat Top belts use the standard headed rods.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)



	Belt Data													
Belt Material	Material			•	ure Range nuous)	W	Belt Weight	1=	_	•	Acceptability: e, 3=Natural, 4=Grey			
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.81	8.82	•				3		•
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28	•				3		•
Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.74	13.38	•				3		•
Acetal ^g	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.74	13.38	•				3		•


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- g. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

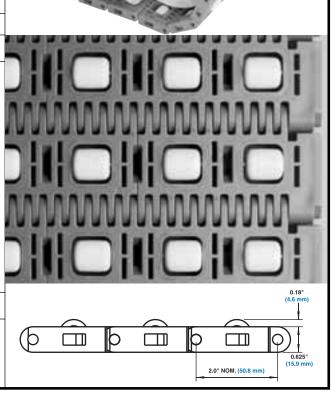

		Non S						
	in.	mm						
Pitch	2.00	50.8						
Minimum Width	2	51						
Width Increments	0.33	8.4						
Opening Size (approximate)	-	-						
Open Area	00	%						
Hinge Style	Clos	sed						
Drive Method	Center-	-driven						
Product Notes								
Always shock with Custom	on Comileo for	nyaalaa half						

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Among highest strength rating of all Intralox belts.
- Contact Customer Service regarding flight availability.
- All Series 400 Non Skid belts use the SLIDELOX® rod retention system.
- SLIDELOX® is glass reinforced polypropylene.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1=WI	Agend hite, 2=B	•	•	•	=Grey	′
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CF A ^b	Ac	J ^d	Z ^e	EU MC ^f
HS EC Acetal	Nylon	2720	4040	-50 to 200	-46 to 93	2.88	14.09							
Polypropylene	Polypropylene	2400	3571	-34 to 220	1 to 104	1.81	8.84	•				3		•

- USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.

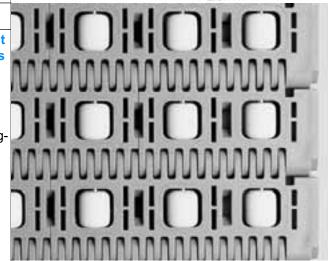

 European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

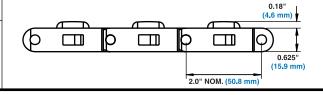
		Roller	Top TM
	in.	mm	10
Pitch	2.00	50.8	THE REAL PROPERTY.
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	18	%	1
Hinge Style	Clo	sed	
Drive Method	Center	-driven	
Product	Notes		

- Always check with Customer Service for precise belt width measurement, roller spacing, and stock status before designing a conveyor or ordering a belt.
- SLIDELOX® flush edges.
- · Acetal rollers, stainless steel axles.
- · Allows for low back pressure accumulation.
- Roller diameter 0.70 in. (17.8 mm). Roller length -0.825 in. (20.9 mm).
- Standard roller indent is 0.90 in. (23 mm)
- Distance to centerline of first roller is 1.3 in. (33 mm), spacing between first and second roller is 1.8 in. (46 mm). Spacing between all other rollers is 2 in. (50.8 mm).
- SLIDELOX® is glass reinforced polypropylene.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	Temperature Range (continuous)		Belt Weight	3. 3						
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	Jc	A ^d	Z ^e	EU MC ^f
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.44	11.94	•			3			•


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Japan Ministry of Health, Labour, and Welfare
- Australian Quarantine Inspection Service
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

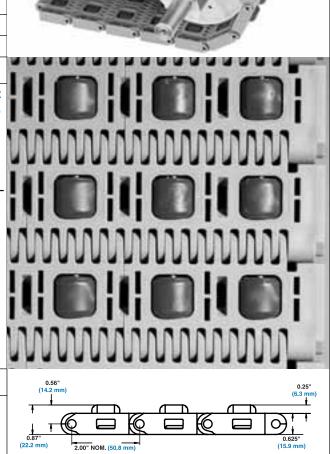


	Trans	sverse I	Roller Top™
	in.	mm	1
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	18	3%	-3
Hinge Style	Clo	sed	
Drive Method	Center	-driven	
Product	Notos		

- Always check with Customer Service for precise belt width measurement, roller spacing, and stock status before designing a conveyor or ordering a belt.
- SLIDELOX® flush edges.
- · Acetal rollers, stainless steel axles.
- Designed for 90° transfers.
- Roller axle pins are stainless steel for durability and longlasting performance.
- Roller diameter 0.70 in. (17.8 mm). Roller length 0.825 in. (20.9 mm).
- Standard roller indent is 0.90 in. (23 mm)
- 2 in. (50.8 mm) roller spacing.
- SLIDELOX® is glass reinforced polypropylene.
- Distance to centerline of first roller is 1.3 in. (33 mm), spacing between first and second roller is 1.8 in. (46 mm). Spacing between all other rollers is 2 in. (50.8 mm).

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1=	Agend White, 2=B	cy Accept lue, 3=Na			rey	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	Jc	A ^d	Z ^e	EU MC ^f
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.44	11.94	•			3			•


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Japan Ministry of Health, Labour, and Welfare
- d. Australian Quarantine Inspection Service
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

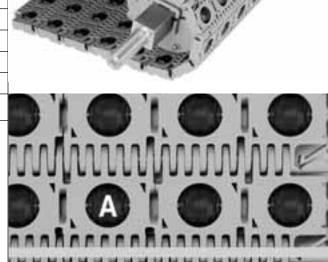
0.85 i	n. Diame	eter Tra	ansverse Roller Top™
	in.	mm	
Pitch	2.00	50.8	1. 1. 1. 1. 1.
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	18	3%	
Hinge Style	Clo	sed	
Drive Method	Center	-driven	
B 1 4	NI 4		

- Always check with Customer Service for precise belt width measurement, roller spacing, and stock status before designing a conveyor or ordering a belt.
- SLIDELOX® flush edges.
- Acetal rollers, stainless steel axles.
- Designed for 90° transfers.
- Roller axle pins are stainless steel for durability and longlasting performance.
- Roller diameter 0.85 in. (21.6 mm). Roller length 0.825 in. (20.9 mm).
- Standard roller indent is 0.90 in. (23 mm)
- Distance to centerline of first roller is 1.3 in. (33 mm), spacing between first and second roller is 1.8 in. (46 mm). Spacing between all other rollers is 2 in. (50.8 mm).
- SLIDELOX® is glass reinforced polypropylene.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	1	Age =White, 2	ency Acce =Blue, 3=			Grey	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.81	13.71	•				3		•

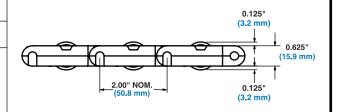
- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



	0°	Angled
	in.	mm
Pitch	2.00	50.8
Minimum Width	6	152
Width Increments	2.00	50.8
Opening Size (approximate)	-	-
Open Area	11	%
Hinge Style	Clo	sed
Drive Method	Center	-driven
D 1 1	NI 4	

- Always check with Customer Service for precise belt width measurement, roller spacing, and stock status before designing a conveyor or ordering a belt.
- This belt uses Activated Roller BeltTM technology.
- Black or grey polyurethane rollers are available. All rollers have an acetal core. Axles are stainless steel.
- Rollers are in-line with the direction of belt travel.
- In-line rollers can run on a standard flat continuous carryway. A chevron carryway is not recommended.
- Black Polyurethane Rollers are not recommended for back up conditions.
- 2.0 in. (50.8 mm) roller spacing.
- When belt rollers are in motion, product will move faster than the speed of the belt. When belt rollers do not rotate, product will travel at belt speed.
- Product behavior varies depending on shape and weight of product, conveyor design, and belt speed.
- Intralox can help you reach a more accurate estimate of product behavior based on product and conveyor characterisitics. Contact Customer Service for details.
- Custom belts consisting of any combination of 0°, 30°, 45°, or 60° are available. Custom belts can also include rollers oriented in different directions. Contact Intralox Customer Service for additional information.
- Angled Roller Belt will not work with the 4.0 in. (102 mm) pitch diameter Split Sprocket and all 5.2 in. (132 mm) pitch diameter sprockets with 2.5 in. and 60 mm square bores.

Additional Information


- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

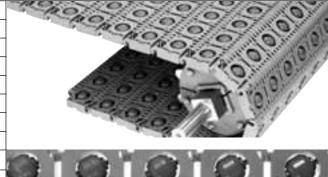
A - Black Polyurethane rollers

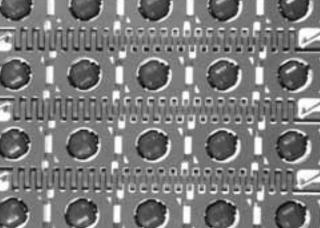
Roller™

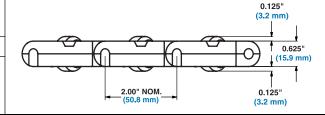
B - Grey Polyurethane rollers

Belt Data									
Belt Material	Standard Rod Material	BS	Belt Strength	Temperati (contir	ureRange nuous)	W	Belt Weight	Agency Ac 1=White, 2=Blue,	ceptability: 3=Natural, 4=Grey
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	EU MC ^a
Polypropylene/Black Polyurethane	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94	•	
Polypropylene/Grey Polyurethane	Nylon	1600	2381	34 to 120	1 to 49	2.73	13.33	•	

a. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



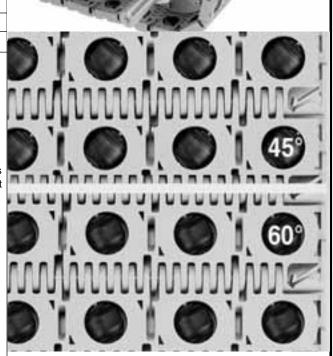

			TM
		30° Angle	d Roller [™]
	in.	mm	Lice,
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	11	1%	
Hinge Style	Clo	sed	
Drive Method	Center	-driven	
			THE RESERVE TO SERVE THE PERSON NAMED IN

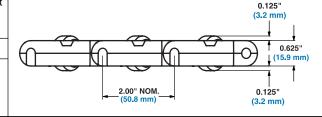

- Always check with Customer Service for precise belt width measurement, roller spacing, and stock status before designing a conveyor or ordering a belt.
- This belt uses Activated Roller BeltTM technology.
- Grey polyurethane rollers with an acetal core are available. Axles are stainless steel.
- Rollers are skewed 30° from the direction of belt travel.
- Grey polyurethane rollers can run on a standard flat continuous carryway.
 A chevron carryway is not recommended.
- Belt can be supported using parallel wearstrips placed in between belt rollers. Contact Customer Service for details.
- 2 in. (50.8 mm) roller spacing.
- When belt rollers are in motion, product will move faster than the speed of the belt. When belt rollers do not rotate, product will travel at belt speed.
- Product behavior will vary depending on shape and weight of product, conveyor design, and belt speed. Intralox can help you reach a more accurate estimate of product behavior based on product and conveyor characteristics. Contact Customer Service for details.
- Centering configuration is possible using two belts with rollers oriented towards the center of the conveyor.
- Alignment belts on a flat continuous carryway require a side wear strip and the belt should be installed to run flush along this wearstrips.
- Custom belts consisting of any combination of 0°, 30°, 45°, or 60° are available. Custom belts can also include rollers oriented in different directions. Contact Intralox Customer Service for additional information.
- Angled Roller Belt will not work with the 4.0 in. (102 mm) pitch diameter Split Sprocket and all 5.2 in. (132 mm) pitch diameter sprockets with 2.5 in. and 60 mm square bores.
- Minimum belt width for Polyethylene is 8 in. (203 mm). Polyethylene belts between 8 in. (203 mm) to 10 in. (254 mm) wide should be de-rated to 450 lb/ft. (670 kg/m).
- If any moisture is present, then the low temperature limit of the Polyethylene belt is 34° F (1° C).
- Polyethylene belts require Ultra Abrasion Resistant Polyurethane sprocket on the drive shaft. Any sprocket can be used on the idle shaft with the exception of sprockets with low back tension teeth.

Additional Information

- See "Belt selection process" (page 5)
- · See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- · See "Friction factors" (page 31)

Belt Data									
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	Agency Acc 1=White, 2=Blue, 3	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	EU MC ^a
Polypropylene/Grey Polyurethane	Nylon	1600	2381	34 to 120	1 to 49	2.64	12.89	•	•
Polyethylene/Grey Polyurethane	Nylon	500	744	17 to 150	-8 to 65	2.93	14.31	•	


a. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



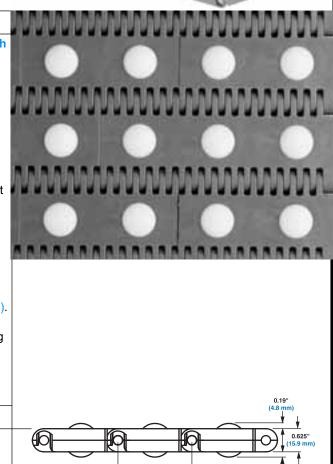
	45	s° and 60° Ang	led Roller TM		
	in.	mm	20		
Pitch	2.00	50.8	100		
Minimum Width	6	152	-		
Width Increments	2.00	50.8	-		
Opening Size (approximate)	-	-	A		
Open Area	11	1%	200		
Hinge Style	Clo	Closed			
Drive Method	Center	-driven			
	•				

- Always check with Customer Service for precise belt width measurement, roller spacing, and stock status before designing a conveyor or ordering a belt.
- This belt uses Activated Roller BeltTM technology.
- Black polyurethane rollers with an acetal core are available. Axles are stainless steel.
- Rollers are skewed either 45° or 60° degrees from direction of belt travel.
- Skewed black polyurethane rollers are designed for use with a patented carryway system for optimal product movement. Black polyurethane rollers should not be allowed to contact a flat continuous or chevron carryway. Belt can be supported using parallel wearstrips placed in between belt rollers. Contact Customer Service for details.
- Black polyurethane rollers are not recommended for back up conditions.
- 2.0 in. (50.8 mm) roller spacing.
- When belt rollers are in motion, product will move faster than the speed of the belt. When belt rollers do not rotate, product will travel at belt speed.
- Product behavior will vary depending on shape and weight of product, conveyor design, and belt speed. Intralox can help you reach a more accurate estimate of product behavior based on product and conveyor characterisitics. Contact Customer Service for details.
- Custom belts consisting of any combination of 0°, 30°, 45°, or 60° are available. Custom belts can also include rollers oriented in different directions. Contact Intralox Customer Service for additional information.
- Angled Roller Belt will not work with the 4.0 in. (102 mm) pitch diameter Split Sprocket and all 5.2 in. (132 mm) pitch diameter sprockets with 2.5 in. and 60 mm square bores.
- Minimum belt width for Polyethylene is 8 in. (203 mm) and only available in 45°. Polyethylene belts between 8 in. (203 mm) to 10 in. (254 mm) wide should be de-rated to 450 lb/ft. (670 kg/m).
- If any moisture is present, then the low temperature limit of the Polyethylene belt is 34° F (1° C).
- Polyethylene belts require Ultra Abrasion Resistant Polyurethane sprocket on the drive shaft. Any sprocket can be used on the idle shaft with the exception of sprockets with low back tension teeth.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data										
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	Agency Accep 1=White, 2=Blue, 3=N	•	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	EU MC ^a	
Polypropylene/Black polyurethane	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94	•		
Polyethylene/Black polyurethane	Nylon	500	744	17 to 150	-8 to 65	2.93	14.31	•		

a. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Ball Belt
	in.	mm
Pitch	2.00	50.8
Minimum Width	10	254
Width Increments	2.00	50.8
Opening Size (approximate)	-	-
Open Area	09	/ ///////////////////////////////////
Hinge Style	Clos	sed
Drive Method	Center	-driven
		1000

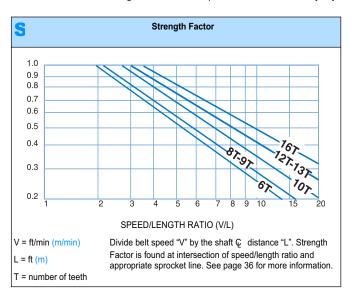
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- · Fully flush edges with standard headed rods.
- Acetal balls.
- Designed for applications requiring product redirection, alignment, transfer, diverting, palletizing, orientation, accumulation or justification. Product movement is controlled by driving balls with a perpendicular secondary conveyor underneath main belt.
- Balls protrude beyond top and bottom of belt. Module does not contact carryway.
- Product on top of the balls will move faster than belt speed.
 Product speed will vary depending on shape and weight of product.
- Ball diameter is 1.0 in. (25.4 mm)
- 2 in. (50.8 mm) space between balls.
- Standard ball indent is 1.1 in (27.9 mm).
- Rod centerline to top or bottom of module is 0.313 in (7.9 mm).
- Rod centerline to top or bottom of ball is 0.50 in (12.7 mm).
- Alignment configurations should be installed to run flush along the side wearstrip.
- · A flat continuous carry way is required.
- Self-set retaining rings for locking sprockets are not recommended.

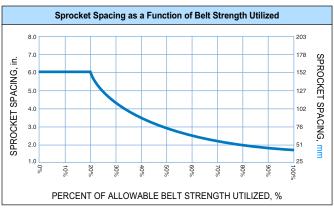
Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

2.00" NOM. (50.8 mm)

(4.8 mm)


	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength ^a	Temperatu (contin	•	W	Belt Weight	1	Age I=White, 2	ency Acc =Blue, 3			Grey	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Acetal	Polypropylene	2400	3571	34 to 200	1 to 93	3.71	18.11	•				3		•


- a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).
- USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

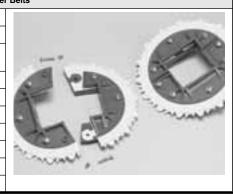
		1	and Support Quantity Refere			
Belt Wid	th Range ^a	Minimum Number of	V	/earstrips		
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway		
2	51	1	2	2		
4	102	1	2	2		
6	152	2	2	2		
7	178	2	2	2		
8	203	2	2	2		
10	254	2	3	2		
12	305	3	3	2		
14	356	3	3	3		
15	381	3	3	3		
16	406	3	3	3		
18	457	3	3	3		
20	508	5	4	3		
24	610	5	4	3		
30	762	5	5	4		
32	813	7	5	4		
36	914	7	5	4		
42	1067	7	6	5		
48	1219	9	7	5		
54	1372	9	7	6		
60	1524	11	8	6		
72	1829	13	9	7		
84	2134	15	11	8		
96	2438	17	12	9		
120	3048	21	15	11		
144	3658	25	17	13		
or Other	Widths, Use Od	dd Number of Sprockets ^c at 52 mm) Ç Spacing	t Maximum 9 in. (229 mm) Ç Spacing ^d Maximum 12 in. (305 mm) Ç S			

- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Flat Top, Flush Grid, and Raised Rib belts are available in 0.33 in. (8.4 mm) increments beginning with a minimum width of 2 in. (51 mm). The increment for Open Hinge belts is 0.25 in. (6 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.
- d. Ball Belt and some Angled Roller Belts require a flat continuous carryway.

						Fo		ocket Da		tal	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available B	ore Sizes		
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia. in.	Outer Dia.	Hub Width in.	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)		mm		mm		mm	Round in. ^b	Square in.	Round mm ^b	Square mm	
6 (13.40%)	4.0	102	3.6	91	1.5	38		1.5		40	
8 (7.040())	5.2	132	5.0	127	1.5	38		1.5		40	
(7.61%)								2.5		60	
10	6.4	163	6.3	160	1.5	38	2.0	1.5		40	
(4.89%)								2.5		60	3
										70	1 - Pitch diameter
12	7.8	198	7.7	196	1.5	38		1.5		40	2 - Outer diameter
(3.41%)								2.5		60	3 - Hub width
16	10.1	257	10.2	259	1.5	38		1.5		40	
(1.92%)								2.5		60	
								3.5		90	

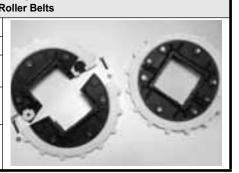
- a. Contact Customer Service for lead times.
- b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

		l	Low B	ack T	ension			Resista Open Hing			ne Split Sprocket
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub	U.S.	Available B		Sizes	
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm		Square in.	n. Round Square mm		
10	6.4	163	6.3	160	1.5	38		1.5		40	
(4.89%)								2.5			42
12 (3.41%)	7.8	198	7.7	196	1.5	38		2.5			11 100
16 (1.92%)	10.1	257	10.2	259	1.5	38		2.5			10000


a. Contact Customer Service for lead times. When using Low Back Tension Ultra Abrasion Resistant Polyurethane Split Sprockets, the maximum Belt Strength for all styles and materials is 1000 lb/ft (1490 kg/m), and the temperature range for the sprocket is -40 °F (-40 °C) to 160 °F (71 °C).

				Ult	ra Abra			t Polyui Open Hing			procket ^a
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub	U.S.	Available B		Sizes	
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in.		Round mm	Square mm	OPA.
10	6.4	163	6.3	160	1.5	38		1.5		40	11.5
(4.89%)								2.5			- Sept 1
											A. O.
											200
											900

a. Contact Customer Service for lead times. When using Ultra Abrasion Resistant Polyurethane Split Sprockets, the maximum Belt Strength for all styles and materials is 1000 lb/ft (1490 kg/m), and the temperature range for the sprocket is -40 °F (-40 °C) to 160 °F (71 °C).


intralox

		ı	Low Ba	ack Te				Polyure rid Acetal, O			site Split Sprocke r Belts
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available B	ore Sizes		
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia. in.	Outer Dia.	Hub Width in.	Hub Width	U.S. Sizes		Metric	Sizes	
Action)		mm		mm		mm	Round in.	Square in.	Round mm	Square mm	
10	6.4	163	6.3	160	1.70	43		1.5		40	10 No E
(4.89%)								2.5		60	4
12	7.8	198	7.7	196	1.5	38		1.5		40	BM
(3.41%)								2.5		60	
16	10.1	257	10.2	259	1.5	38	3.5	1.5			-
(1.92%)								2.5			The state of the s
								3.5		90	

a. Contact Customer Service for lead times. Recommended for Drive Shaft only. There is very little belt tension when a belt engages the idle sprockets. In some applications, the belt may not have enough tension to engage the added Low Back Tension teeth, causing the belt to disengage on the idle sprockets.

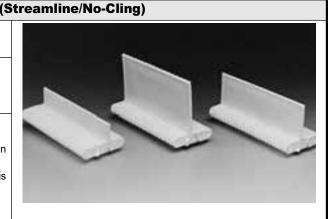
High Strength Polyurethane Composite Split Sprocke For all belts except Flush Grid Acetal, Open Hinge and Roller Belts											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	U.S. Sizes Metric Sizes		Sizes	
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	
16 (1.92%)	10.1	257	10.2	259	1.5	38	4.0	3.5		90	

a. Contact Customer Service for lead times. Recommended for Idle Shaft only.

						;	Split Sp	rocke	t Data	1
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Δ	vailable E	ore Sizes	;
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. 8	Sizes	Metric	Sizes
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in.b	Square in.	Round mm ^b	Square mm
6 (13.40%)	4.0	102	3.6	91	1.5	38		1.5		40
8 (7.61%)	5.2	132	5.0	127	1.5	38	1, 1-3/16, 1-1/4, 1-7/16	1.5	20 30 40	40 60
10 (4.89%)	6.4	163	6.3	160	1.5	38	1, 1-3/16, 1-1/4, 1-3/8, 1-7/16, 1-1/2, 1-15/16	1.5 2.5	20 40	40 60
12 (3.41%)	7.8	198	7.7	196	1.5	38	1-7/16, 1-15/16	1.5 2.5	40	40 60
16 (1.92%)	10.1	257	10.2	259	1.5	38	1-7/16, 1-15/16	1.5 2.5 3.5		40 60 90

- a. Contact Customer Service for lead times.
- Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

Flush Grid Base Flights								
Available Materials	Available Flight Height							
Avaliable iviaterials	mm	in.						
	25	1						
Polypropylene, Polyethylene	51	2						
	76	3						
1 1 1 4 1 1 6 41 1								

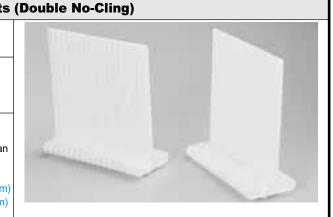

Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: One side of the Flush Grid flight is smooth (Streamline) while the other is ribbed vertically (No-Cling).

Note: The minimum indent (without sideguards) is 0.8 in. (20 mm) and the minimum indent for a SLIDELOX® edge (without sideguards) is 1.4 in. (36 mm).

Note: An extension can be welded at a 45° angle for a bent flight.



Flush Grid Base Flight		
Available Materials	light Height	Available F
Available Waterials	mm	in.
	152	6
Polypropylene, Polyethylene		
1 1 1 4 1 1 6 4 1		N. 4 Et 14

Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 0.8 in. (20 mm) and the minimum indent for a SLIDELOX® edge (without sideguards) is 1.4 in. (36 mm) **Note:** 45 degree bent flights are available in polypropylene with a 3 in (76 mm) tall base and with a 1 in. (25 mm) or 2 in. (51 mm) extension.

		Open Hinge Base Flights			
Available F	light Height	Available Materials			
in.	mm	Available Materials			
1	25	Polypropylene, Polyethylene			
2	51				
3	76				

Note: Flights can be cut down to any height required for a particular application.

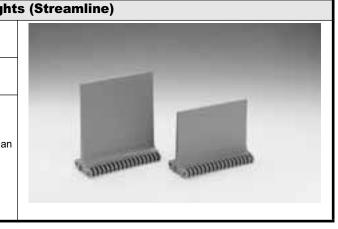
Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: One side of the Open Hinge flight is smooth (Streamline) while the other is ribbed vertically (No-Cling).

Note: The minimum indent (without sideguards) is 0.6 in. (15 mm).

Note: Series 400 Open Hinge flights can be extended to 6 in. (152 mm) high (welded extension). The extension can also be welded at a 45° angle for a bent flight

Flat Top Base Fli			
Available Materials	Available Flight Height		
Available Waterlass	mm	in.	
Delygrapylana Delygthylana Aceta	102	4	
Polypropylene, Polyethylene, Aceta	152	6	


Note: Flights can be cut down to any height required for a particular application.

Note: Flat Top flight is smooth (Streamline) on both sides.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 0.8 in. (20 mm) and the minimum indent for a SLIDELOX® edge (without sideguards) is 1.4 in. (36 mm).

Note: Flat Top-based flights cannot be used with Flush Grid belts.

Sidegu					
Available Materials	Available Sizes				
Available Materials	mm	in.			
	51	2			
Polypropylene, Polyethylene	76	3			
	102	4			

Note: Sideguards have a standard overlapping design and are an integral part of the belt, with no fasteners required.

Note: The minimum indent is 0.8 in. (20 mm).

Note: The normal gap between the sideguards and the edge of a flight is 0.4 in. (10 mm).

Note: When going around the 6 and 8 tooth sprockets, the sideguards will fan out, opening a gap at the top of the sideguard which might allow small products to fall out. The sideguards stay completely closed when going around the 10, 12 and 16 tooth sprockets.

Hold Down Tabs

Note: The strength rating for each Hold Down Tab is 100 lbs $(45.4\ kg)$ of force perpendicular to the hold-down surface.

Note: Tabs can be spaced along the length of the belt at either4 inches (101.6 mm) or 6 inches (152.4 mm). Tab spacings greater than 6 inches (152.4 mm) should be avoided due to the potential of mistracking.

Note: Carryway wearstrip or rollers that engage the tabs are only required at the transition between the horizontal sections and angled sections. This reduces initial system cost, as well as ongoing maintenance cost and effort.

Note: Care should be taken to ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame.

Note: A carryway radius should be designed at the transition between horizontal sections and angled sections. This radius must be at least 48 inches (1.22 m) for belts that will be loaded near the belt's strength rating. This radius is one of the most important factors to take into consideration when designing highly loaded conveyors that utilize Hold Down Tabs.

Note: Available on Non Skid and Flat Top belts

			l:	nsert Nut
Available	Base Belt Style	Available Insert Nut Sizes		
Series 400 Fla	at Top - Acetal, F	5/16" - 18 (8 mm - 1.25 mm)		
Belt Material	Maximum Fi	xture Weight	Fastener Torque Specification	
	lbs/nut ^a	kg/nut ^a	inlbs	N-m
Acetal	200 91		120	13.5
Polypropylene	175	79	65	7.3

Note: Insert Nuts easily allow the attachment of fixtures to the belt.

Note: Nut placement constraints are as follows; 2" (50 mm) minimal indent from the edge of the belt, 1-1/3" (34 mm) minimal distance between nuts across the width of the belt and spacing along the length of the belt is in2" (50 mm) increments.

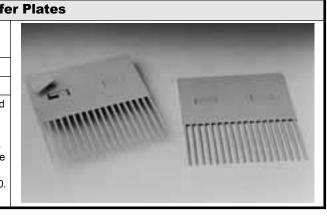
Note: All nut placement dimensions are referenced from the edge of the belt when placing an order. Contact Intralox Customer Service for nut location options available for your individual belt specifications.

Note: Attachments that are connected to more than one row must not prohibit the rotation of the belt around the sprockets.

Note: Sprockets cannot be located in-line with the locations of the insert nuts in the belt.

Note: For attachment bases that extend across multiple rows, considerations should be made to accommodate for reduced backbend.

a. This is fixture weight only. Product weight need not be included.



			Finger Transf	
Availabl	e Widths	Number of	Available Materials	
in.	mm	Fingers		
6	152	18	Polypropylene	

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

Note: The Finger Transfer Plates for Series 400 are the same for Series 1200.

Two-Material Finger							
Available	e Widths	Number of	Available Materials				
in.	mm	Fingers					
6	152	18	Glass-Filled Thermoplastic Fingers, Acetal Backplate				
			· · · · · · · · · · · · · · · · · · ·				

Note: Plates provide high strength fingers combined with a low friction back plate.

Note: Low-friction back plate is permanently attached to the two high-strength finger inserts.

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

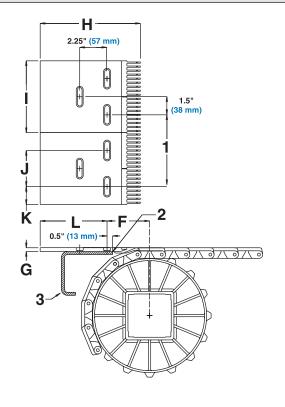
Note: The Finger Transfer Plates for Series 400 are the same for Series 1200.

Note: Available in three different configurations:

Standard - long fingers with a short back plate.

Standard Extended Back - long fingers with an extended back plate Glass Handling -

- Short fingers with extended back plate
- Short fingers/short back (Contact Customer Service for lead times.)
- Mid-Length Fingers/short back
- Mid-Length Fingers/extended back


The long fingers provide good support for unstable products like PET containers and cans. The short fingers are sturdy enough for even the harshest broken glass applications. These fingers are designed to resist breaking, but if confronted with deeply embedded glass, the individual fingers will yield and break off, preventing costly belt or frame damage. The short back plate has two attachment slots and the extended back plate has three attachment slots. Mounting hardware for the two standard two-material FTP's includes plastic shoulder bolts and bolt covers. Mounting hardware for the Glass Handling two-material FTP's includes stainless steel oval washers and bolts which gives more secure fastening for the tough glass applications (Glass Handling hardware is sold separately). Plastic bolt covers are also included. The 10.1 in. (257 mm) PD, 16 tooth sprockets are recommended to be used with the Glass Handling finger transfer plates for best product transfer.

Note: Intralox also offers a single-material polypropylene standard finger transfer plate for better chemical resistance. Mounting hardware for this FTP includes plastic shoulder bolts and snap-cap bolt covers.

		Dim	ension	al Rec	uirer	nents	for F	inger	Transfer Plate Installations
				Two-M					H
	Lo Fing	ndard ong jers - t Back	Fing	rd Long jers - ed Back	Han Sh Fing Exte	ass dling nort gers - ended ack	Han Mid-L Fing Exte	ass dling ength gers - ended ack	2.25" (57 mm)
	in.	mm	in.	mm	in.	mm	in.	mm	1
F	3.50	89	3.50	89	3.50	89	3.50	89	
G	0.31	8	0.31	8	0.31	8	0.31	8	K — I — F — 2
Н	7.25	184	10.75	273	8.26	210	9.04	230	0.5" (13 mm)
I	5.91	150	5.91	150	5.91	150	5.91	150	G
J	3.00	76	3.00	76	3.00	76	3.00	76	3
К	1.45	37	1.45	37	1.45	37	1.45	37	
L	2.00	51	5.50	140	5.50	140	5.50	140	
	'	Spacir	ng at amb	ient tem	peratur	е	•	,	TWO-MATERIAL FINGER TRANS
PP		5.9	952 in.	151.2	? mm				Two-material glass handling finger tra
PE		5.9	933 in.	150.7	mm				2 - 0.5" (13 mm) Radius (leading edge of fi

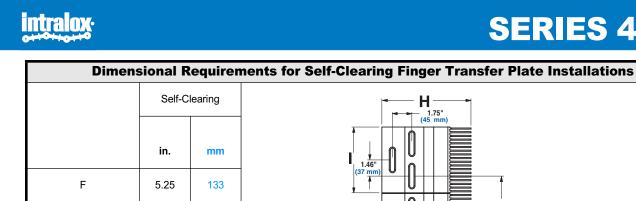
TWO-MATERIAL FINGER TRANSFER PLATES

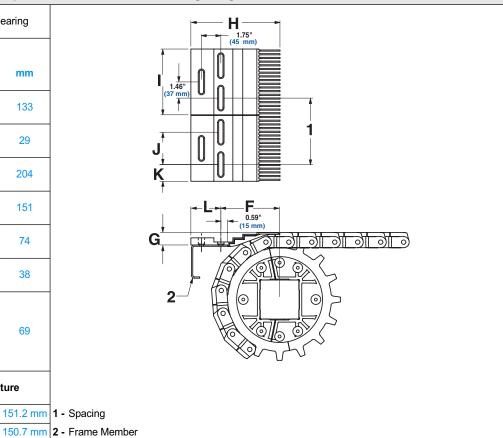
Two-material glass handling finger transfer plate shown

- 1 Spacing
- **2 -** 0.5" (13 mm) Radius (leading edge of frame member)
- 3 Frame member

		5	Self-Clearing Finger	Transfer Plates
Available Width		Number of	Available Materials	
in.	mm	Fingers	Available ivialerials	1
6	152	18	Polyurethane	-

Note: The Self-Clearing Finger Transfer System consists of a finger transfer plate and a transfer edge belt that are designed to work together. This system eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types. The Self-Clearing Finger Transfer System is ideal for warmer/cooler applications with frequent product changeovers and is compatible with any series and style of Intralox belt on the discharge and infeed conveyors. This system is bi-directional allowing the same transfer belt to be used for both left-hand and right-hand transfers.


Note: Self-Clearing Finger Transfer System is capable of transferring product to and from Intralox Series 400, Series 1200 and Series 1900 Raised Rib belts.


Note: Smooth, flat top surface provides excellent lateral movement of containers.

Note: Robust design for durability in tough glass applications.

Note: Finger Transfer Plates are easily installed and secured to mounting plates of any thickness with supplied stainless steel bolts and oval washers that allow movement with the belt's expansion and contraction.

Note: Self-Clearing Transfer Edge Belt is molded with robust tracking tabs for belt support in heavy side-loading conditions. It has fully flush edges, headed rod retention system and nylon rods for superior wear resistance.

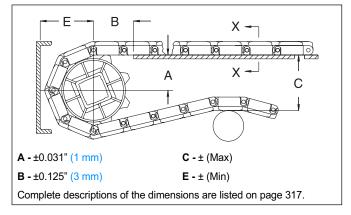
	Self-C	learing
	in.	mm
F	5.25	133
G	5.15	29
Н	8.05	204
I	5.95	151
J	2.92	74
К	1.51	38
L	2.71	69
Spacing at ambie	nt tempera	iture

5.952 in.

5.933 in.

151.2 mm | 1 - Spacing

PP

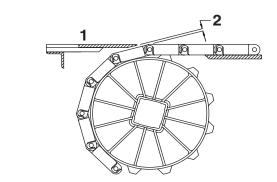

PΕ

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Sp	rocket Des	scription	Α		E	3	(3		E		
Pitch D	Diameter	No Tooth	Range (Bottor	n to Top)			:					
in.	mm	No. Teeth	in.	mm	in.	mm	in.	mm	in.	mm		
•		,	SERIES 400 FLUSH	GRID, FLAT	TOP, OPE	N HING						
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.38	60		
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	2.99	76		
5.8	147	9 ^a	2.44-2.61	62-66	2.70	69	5.95	151	3.49	89		
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.61	92		
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.24	108		
8.4	213	13 ^b	3.75-3.87	95-98	3.22	82	8.46	215	4.74	120		
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.50	140		
			SERIE	S 400 RAISE	RIB							
4.0												
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	3.24	82		
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.99	101		
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.49	114		
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.88	149		
			SERI	ES 400 NON-S	KID							
4.0	102	6	1.42-1.69	36-43	1.60	41	4.09	104	2.46	62		
5.2	132	8	2.10-2.30	53-58	1.98	50	5.31	135	3.07	78		
5.8	147	9	2.43-2.61	62-66	2.31	59	5.93	151	3.38	86		
6.4	163	10	2.77-2.92	70-74	2.26	57	6.56	167	3.70	94		
7.8	198	12	3.42-3.55	87-90	2.60	66	7.81	198	4.32	110		
8.4	213	13	3.74-3.87	95-98	2.84	72	8.44	214	4.64	118		
10.1	257	16	4.71-4.81	120-122	2.97	75	10.34	263	5.59	142		
		SE	RIES 400 ROLLER	TOP, TRANS\	ERSE R	OLLER T	ОР					
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.56	65		
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	3.17	81		
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.79	96		
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.42	112		
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.68	144		
		1	ES 400 0.85 IN. DIA					I				
4.0	102	6	1.27-1.54	32-39	1.72	44	3.96	101	2.48	63		
5.2	132	8	1.95-2.15	50-55	2.13	54	5.18	132	3.09	78		


Sp	rocket Des	scription	A			3		3		E
Pitch D	Diameter	No. Teeth	Range (Bottom to Top)		in.	mm	in.	mm	in.	mm
in.	mm	NO. Teetii	in.	mm	""-				"".	
6.4	163	10	2.62-2.77	67-70	2.43	62	6.42	163	3.71	94
7.8	198	12	3.27-3.40	83-86	2.78	71	7.68	195	4.34	110
10.1	257	16	4.56-4.66	116-118	3.20	81	10.20	259	5.60	142
		S	ERIES 400 ANGLEI	D ROLLER (0°	, 30°, 45°	AND 60°) ^b			
4.0	102	6	1.29-1.56	33-40	1.70	43	4.00	102	2.50	64
5.2	132	8	1.98-2.18	50-55	2.11	53	5.23	133	3.11	79
6.4	163	10	2.64-2.80	67-71	2.40	61	6.47	164	3.74	95
7.8	198	12	3.29-3.43	84-87	2.75	70	7.73	196	4.36	111
10.1	257	16	4.59-4.69	117-119	3.16	80	10.25	260	5.63	143
			SERIE	S 400 BALL B	ELTb					
4.0	102	6	1.23-1.50	31-38	1.75	44	4.00	102	2.56	65
5.2	132	8	1.91-2.11	49-54	2.16	55	5.23	133	3.18	81
6.4	163	10	2.58-2.74	65-69	2.47	63	6.47	164	3.80	96
7.8	198	12	3.23-3.36	82-85	2.82	72	7.73	196	4.43	112
10.1	257	16	4.53-4.63	115-117	3.25	82	10.25	260	5.69	144

- a. Flush Grid Acetal only.
- b. Dimensions are established using the top of the roller as the top of the belt and the bottom of the roller as the bottom of the belt.

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

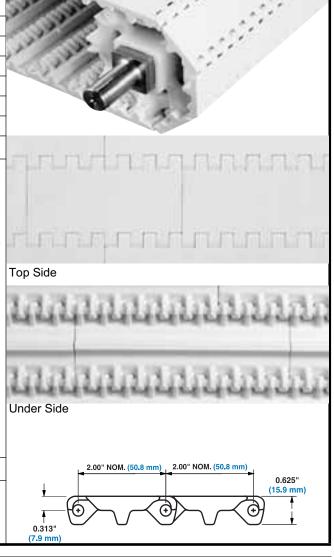
Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	on	Ga	р
Pitch D	iameter	No. Teeth	in.	mm
in.	mm	No. reeur		11111
4.0	102	6	0.268	6.8
5.2	132	8	0.200	5.1
5.8	147	9 (Flush Grid Acetal)	0.178	4.5
6.4	163	10	0.160	4.1
7.8	198	12	0.130	3.3
8.4	213	13 (Flush Grid Acetal)	0.121	3.1
10.1	257	16	0.100	2.5

		Flat 1	Гор
	in.	mm	3 6 6 6 8 9 9 6
Pitch	2.00	50.8	The state of the s
Minimum Width	2	51	Act of the second
Width Increments	0.66	16.8	
Opening Size (approximate)	-	-	AND IS NO
Open Area	0	%	ALL TO A STATE OF THE STATE OF
Hinge Style	Ор	en	
Drive Method	Center	-driven	S. Carry
Product	Notes		
in. Pitch 2.00 Minimum Width Width Increments Opening Size (approximate) Open Area Hinge Style in. 2.00 5 0.66 0.66 0.66 Opening Size (approximate) Open Open		fore sh edges and	
Additional Ir	nformati	on	0.625" 2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm) (15.9 mm)
 See "Standard belt materials" See "Special application belt 	"(page 18) materials" (pa	ge 18)	0.313" (7.9 mm)

	Belt Data														
Belt Material	Material Strength		•	ure Range nuous)	W	Belt Weight		Age 1=White, 2=	ncy Acc Blue, 3	•	•	Grey	/		
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA-FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Z ^d	Je	EU MC ^f
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66	•	•	1	•	•	•	3	•
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.87	9.13	•	•	3	•	•	•	3	•
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.75	13.43	•	•	1	•	•		3	•
Nylon	Polyethylene	1200	1780	-50 to 150	-46 to 66	2.32	11.33	1			•	•			•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- e. Japan Ministry of Health, Labour, and Welfare
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Inon Hinas
	•	Open Hinge
	in.	mm
Pitch	2.00	50.8
Minimum Width	6	152
Width Increments	0.66	16.8
Opening Size (approximate)	-	-
Open Area	(0%
Hinge Style	0	pen
Drive Method	Cente	er-driven
Produc	t Notes	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth, closed upper surface with fully flush edges and recessed rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 1600 and Series 1800, the drive bar on the underside of Series 800 Open Hinge Flat Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Fully compatible with industry-proven Series 800 Flat Top can be spliced directly into Series 800 Flat Top, using the same sprockets and accessories.
- Streamlined flights are available. Standard height is 6 in. (152.4 mm) or they can be cut down to custom heights.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

				Bel	t Data										
Belt Material	Standard Rod Material	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					•		
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e		
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96	•	1			3	•		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.70	8.30	•	3			3	•		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.3	•	1			3	•		
Detectable Polypropylene ^f	Blue Polyethylene	500	750	0 to 150	-18 to 66	1.83	8.93	•				4	•		

Flat Top

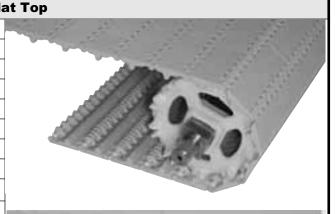
- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- f. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

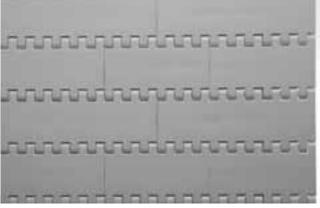
	SeamFr	ее™ Ореі	n Hinge Flat Top
	in.	mm	F F F F W 11.7
Pitch	2.00	50.8	
Minimum Width	6	152	Server St. 11
Width Increments	0.66	16.8	S/8/ 0 > 1
Opening Size (approximate)	-	-	STATE OF
Open Area	0	%	
Hinge Style	Op	en	
Drive Method	Center	-driven	and the second
Product	t Notes		
measurement and stock statu conveyor or ordering a belt. Smooth, closed upper surface varecessed rods. Cam-link designed hinges - expethe belt goes around the sprock feature allows unsurpassed clear Fully sculpted and radiused cor corners to catch and hold debriabrive Bar - like Series 1600 and the underside of Series 800 Opwater and debris to the outside clean up. The drive bar's effection-house and in field tests. Fully compatible with industry-pbe spliced directly into Series sprockets and accessories. Streamlined flights are available (152.4 mm) or they can be cut of Belts over 36" (914 mm) will be row, but seams will be minimized.	with fully flush ed ose more hinge a ket. This exclusive aning access to the rerest of the series 1800, the Hinge Flat To of the belt for earliveness has been roven Series 800,00 Flat Top, using e. Standard height down to custom be built with multiplied.	ges and and rod area as e Intralox his area. s or sharp e drive bar on p channels sier, faster n proven both Flat Top – car g the same at is 6 in. neights.	
Additional I		2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm) 0.313	
 See "Belt selection process" (pa See "Standard belt materials" (p See "Special application belt ma 	page 18)	0.625" (15.9 mm)	

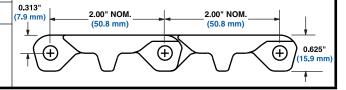
	Belt Data												
Belt Material	Standard Rod Material Ø 0.24 in.	BS	S Belt Temperature Range (continuous)		Weight		Agency Acceptability ^a 1=White, 2=Blue, 3=Natural, 4=Grey						
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	Jc	EU MC ^d		
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96	•	1	3	•		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.70	8.30	•	3	3	•		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.3	•	1	3	•		
X-Ray Detectable Acetal ^e	Blue Polyethylene	900	1340	-50 to 150	-46 to 66	2.98	13.67	•			•		

- Prior to Intralox's development of the Series 800 SeamFree™ Open Hinge Flat Top, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.

See "Friction factors" (page 31)


- b. USDA Dairy acceptance requires the use of a clean-in-place-system.
 c. Japan Ministry of Health, Labour, and Welfare.
 d. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
 e. Designed specifically to be detected by x-ray machines.




		Tough Fla
	in.	mm
Pitch	2.00	51.0
Minimum Width	2	51
Width Increments	0.66	16.8
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Ор	en
Drive Method	Center	-driven
Due deset	NI-4	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth, closed upper surface with fully flush edges and recessed rods.
- Designed to withstand extreme impact applications in food processing.
- Easy retrofit from Series 1800 without extensive conveyor frame changes for most meat industry applications since the A,B,C,E dimensions are within 0.25 in. (6 mm) of Series 1800.
- Cam-link designed hinges expose more hinge and rod area as belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Drive Bar like Series 1600 and Series 1800, the drive bar on the underside of Series 800 Tough Flat Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Fully compatible with industry-proven Series 800 Flat Top and Series 800 Open Hinge - can be spliced directly into both styles, using the same sprockets and accessories.
- Streamlined Tough flights are available. Standard height is 6 in. (152.4 mm) or they can be cut down to custom heights. A molded-in 1.3 in. (33 mm) indent from the edge is available.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight		Age 1=White, 2:	ency Acce =Blue, 3=	•	•	Grey		
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)		USDA Dairy ^a	CFA ^b	A ^c	Z ^d	Je	EU MC ^f
Hi-Impact	Acetal	500	744	0 to 120	-18 to 49	2.26	11.03	•			•	•	•		•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- o. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- e. Japan Ministry of Health, Labour, and Welfare
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Per	rforated	Flat Top
	in.	mm	
Pitch	2.00	50.8	THE RESERVE OF THE PARTY OF THE
Minimum Width	2	51	
Width Increments	0.66	16.8	
Min. Opening Size (approx.)	0.29 × 0.08	7.4 × 1.9	
Max Opening Size (approx.)	0.44 × 0.08	11.1 × 1.9	
Open Area	18	%	
Hinge Style	Ор	en	
Drive Method	Center-	-driven	The state of the s
Product	Notes		
Always check with Custom width measurement and store designing a conveyor or or Perforated version of Series Smooth upper surface with fur ecessed rods. Flights and sideguards are an experience of the store of the st	ock status befordering a belt. 800 Flat Top. Illy flush edges vailable.	and	
Additional I	nformatio	0.625" (15.9 mm) 2.00" NOM. (50.8 mm) (15.9 mm)	
 See "Belt selection process" See "Standard belt materials See "Special application belt See "Friction factors" (page 3 	"(page 18) <i>materials"</i> (pag	0.313" (7.9 mm)	

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight			Agency A e, 2=Blue		•		rey	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.54	7.25	•	•	1			3	•	•
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.59	7.76	•	•	3			3	•	•
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.28	11.15	•	•	1			3	1	•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
 b. Canada Food Inspection Agency
 c. Australian Quarantine Inspection Service
 d. Japan Ministry of Health, Labour, and Welfare
 e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
 f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

Р	erforate	d Flat T	op Round	l Holes
	in.	mm		
Pitch	2.00	50.8	200	
Minimum Width	2	51		Sec.
Width Increments	0.66	16.8	A	
Opening Size (approximate)	see photo	s on right	A	
Open Area	see photo	s on right		11/12
Hinge Style	Ор	en		366
Drive Method	Center	-driven		-
Product	Notes		A THE STREET	

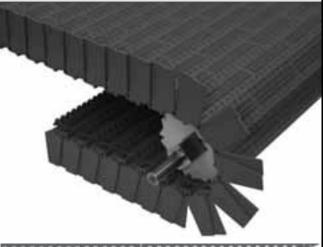
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Round hole versions of Series 800 Perforated Flat Top.
- Smooth upper surface with fully flush edges and recessed rods.
- If using this belting in abrasive applications, Intralox recommends Series 800 polyurethane sprockets. Stainless steel split sprockets are not recommended for use with this belt.

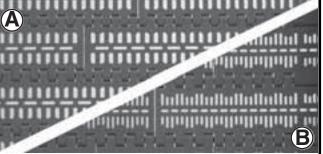
5/32" (4 mm) - 20% Open Area

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

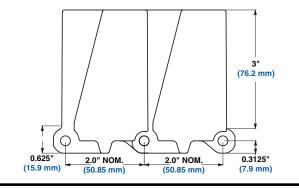
11/32" (8.	<mark>7 mm)</mark> - 14% Op	en Area	
	2.00" NOM. (50.8 mm)	2.00" NOM. (50.8 mm)	0.625" (15.9 mm)
1(4			9))
0.313" (7.9 mm)			

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength				ure Range nuous)	W	Belt Weight	1		gency Ac 2=Blue,			;y
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	Dairy ^a	J _p	Z ^c	EU MC ^d		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.54	7.52	•	•	1	3	•	•		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.59	7.76	•	•	3	3	•	•		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.28	11.15	•	•	1	3		•		


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- c. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a Geal-Interplace System.
 d. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



Perforated Flat To	p (Medium S	Slot / Larg	e Slot)	featurin	g Molded	l-in Sideguard
	in.	mm	-01C			10/0/2
Pitch	2.00	51.0				
Minimum Width	6	152	4			
Width Increments	0.66	16.8		44	100	
Large Min. Opening Size	0.16 x 0.39	4.1 x 9.9				
Large Max. Opening Size	0.12 x 0.50	3.0 x 12.7		-		
Medium Min. Opening Size	0.16 x 0.09	4.1 x 2.3	i i	200		A 300
Medium Max. Opening Size	0.40 x 0.18	10.2 x 4.6			. 15	No. of London
Large Slot Open Area	22	2%			1	
Medium Slot Open Area	20)%		-		100
Hinge Style	Op	en			100	
Drive Method	Center	Center-driven			_	
			1			


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Belt withstands temperatures from -20 °F (-29 °C) to 220 °F (104 °C).
- Extra perforations are positioned along each drive bar to increase open area and drainage.
- Compatible with a variety of Series 800 sprockets. Please contact Customer Service for sprocket recommendations.
- Molded-in Sideguard indent is 0 in. (0 mm).
- Molded-in Sideguard height is 3 in. (76 mm).
- Molded-in Sideguard minimum backbend radius is 7 in.
- Molded-in Sideguards are available in Medium slot but can accommodate both the medium and large slot Series 800 Perforated Flat Top.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

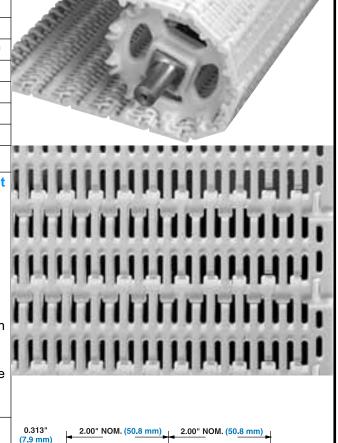
- A Large slot
- B Medium slot

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1	Aç =White,	gency Ac 2=Blue,	•	•	Gre	у
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e
Polypropylene Composite	303-304 Stainless Steel	2000	2975	34 to 220	1 to 104	2.47	13.61	•						•

- USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
 Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

0.625"

15.9 mm)


		Flush				
	in.	mm				
Pitch	2.00	50.8				
Minimum Width	4.6	117				
Width Increments	0.66	16.8				
Opening Size (approximate)	0.15 × 0.90	3.8 × 22.9				
Open Area	279	%				
Product Contact Area	739	%				
Hinge Style	Open					
Drive Method	Center-	driven				
	4 81 4					

Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth upper surface with fully flush edges.
- Open slots improve drainage and cleanability.
- Uses a headless rod retention system.
- Flights and sideguards available.
- Complete range of accessories available, including round-top flights and flights with drainage bases.
- Provides excellent drainage during production and clean up. Hole design eliminates water collecting on belt surface and being carried throughout processing line.
- Bi-directional belt design allows sprockets to drive or idle belt in both directions. Reduces chances of installation error.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

				Ве	It Data									
Belt Material	Standard Rod Material	BS	BS Belt Strength Continuous) Temperature Range (continuous)				Belt Weight	1=	Ager White, 2=	ncy Acce Blue, 3=	•	•		еу
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Z ^d	Je	EU MC ^f
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.45	7.08	•	1				3	•
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.63	7.96	•	3				3	•
Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	2.25	10.99	•	1				3	•
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	2.25	10.99	•	1				3	•

Grid

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. New Zealand Ministry of Agriculture and Forestry
- e. Japan Ministry of Health, Labour, and Welfare
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

OHOHO PIO			SERIES 600
		Mesh '	Γορ™
	in.	mm	1000
Pitch	2.00	50.8	
Minimum Width	2	51	100000000000000000000000000000000000000
Width Increments	0.66	16.8	
Opening Size (approximate)	0.50 × 0.04	12.7 × 1.0	
Open Area	99	%	
Hinge Style	Op	en	
Drive Method	Center	-driven	1
Product	Notes		
 Impact resistant belt designe Flights are available. 	a ior tough app	oncations.	Top Surface
Additional I		on	Underside Surface
 See "Belt selection process" 	(page 5)		(7.9 mm) (35.5 mm) (35.5 mm) (35.5 mm) (15.9 mm

- See "Belt selection process" (page 5)See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
 See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1	Age =White, 2=	ncy Acce Blue, 3=				rey
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.60	7.86	•	1			3		•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
 b. Canada Food Inspection Agency
 c. Australian Quarantine Inspection Service
 d. Japan Ministry of Health, Labour, and Welfare
 e. New Zealand Ministry of Agriculture and Forestry
 f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Mini	Rib
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	10/3/3/3/3/3333
Width Increments	0.66	16.8	The state of the s
Opening Size (approximate)	-	-	TOTAL CO.
Open Area	0,	%	and the second
Hinge Style	Ор	en	
Drive Method	Center	-driven	S. Charles
Product	Notes		
 Always check with Custome width measurement and stodesigning a conveyor or ore Closed surface with fully flush Impact resistant belt designed applications. 1/8 in. (3 mm) Mini Rib on sur gradual inclines and declines. Not recommended for back-u required, contact Intralox Sale 	ock status bed dering a belt. n edges and red d for tough Me face accommendations. I	cessed rods. at Industry odates f values are	
Additional Ir	nformati	on	2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm)
See "Belt selection process" (See "Standard belt materials" See "Special application belt"	(page 18)	40\	0.750" (19.1 mm)

	Belt Data														
Belt Material	Standard Rod Material Ø 0.24 in. (6.1 mm)		Belt Strength		ure Range nuous)	W	Belt Weight		Age 1=White, 2	ency Acce =Blue, 3=		•	Gre	y	
			kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA-FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66	•	•	1	•	•	3	•	•
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.87	9.13	•	•	3	•	•	3	•	•
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.92	14.26	•	•	1	•	•	3	•	•

0.438"

a. USDA Dairy acceptance requires the use of a clean-in-place-system.

See "Special application belt materials" (page 18)

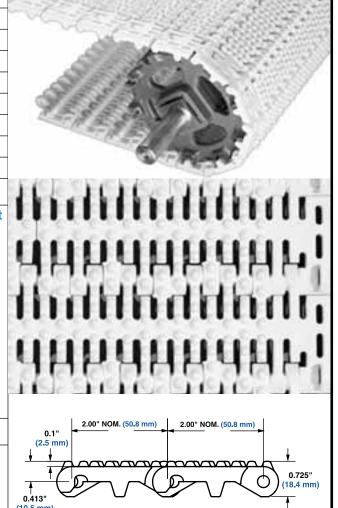
- b. Canada Food Inspection Agency
- Australian Quarantine Inspection Service

See "Friction factors" (page 31)

- Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
 f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Nub T
	in.	mm
Pitch	2.00	50.8
Minimum Width	4	102
Width Increments	0.66	16.8
Open Area	0	%
Product Contact Area	15	5%
Hinge Style	Op	pen
Drive Method	Center	r-driven
Produc	t Notes	
 Always check with Custon width measurement and sidesigning a conveyor or or concept of the constant o	tock status be ordering a belt. ally flush edges a uards (without note in a conditions. I ales Engineering	fore and recessed nubs) are If values are
Additional I	nformati	on
 See "Belt selection process" See "Standard belt materials See "Special application bel See "Friction factors" (page 	s" (page 18) It materials" (pa	ge 18)

	Belt Data														
Belt Material	Standard Rod Material Strength Continuous) B Belt Continuous Belt Weight							3,,							
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.90	9.26	•	•	1	•	•	3	•	•
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	2.01	9.80	•	•	3	•	•	3	•	•
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.95	14.40	•	•	1	•	•	3	•	•


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
 b. Canada Food Inspection Agency
 c. Australian Quarantine Inspection Service
 d. Japan Ministry of Health, Labour, and Welfare
 e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place-system.
 f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

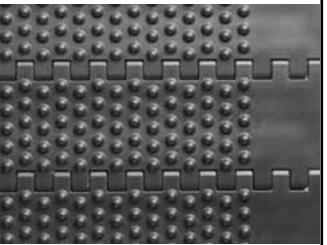
	Flus	sh Grid I	Nub Top™		
	in.	mm			
Pitch	2.00	50.8			
Minimum Width	4.6	117			
Width Increments	0.66	16.8			
Opening Size (approximate)	0.15 × 0.90	3.8 × 22.9	4000		
Open Area	27	%	450		
Product Contact Area	15	15%			
Hinge Style	Ор				
Drive Method	Center-				
Duaduat					

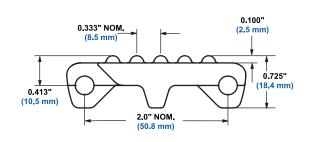
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Standard Nub indent is 1.3 inches (33 mm).
- Headless rod retention system allows re-use of rods.
- Nub pattern reduces contact between belt surface and product.
- Can be fitted with Series 800 Flush Grid flights only.
- Manufactured in Acetal and Polypropylene.
- Recommended for products large enough to span the distance between the nubs.
- Nub pattern is continuous over the surface of the belt, even over the hinges.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material Standard Roo Material Ø 0.24 in. (6.1 mm)		BS	Belt Strength	Temperati (contir	W	Belt Weight		Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey					/	
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.56	7.62	•	1			3		•
Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	2.36	11.52	•	1			3		•
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	2.36	11.52	•	1			3		•
Polyethylene	Polypropylene	500	750	-50 to 150	-46 to 66	1.85	9.03	•	3			3		•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.




	SeamFree ¹	™ Open	Hinge Nub Top™
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	0.66	16.8	
Opening Sizes (approx.)	-	-	
Open Area	00	%	- APPENDING
Hinge Style	Ор	en	4000
Drive Method	Center-	-Driven	
D d	-4		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Nub height is 0.100 in. (2.5 mm).
- Nub spacing is 0.333 in. (8.5 mm).
- Standard nub indent is 1.3 in. (33 mm).
- Closed upper surface with fully flush edges and recessed rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 800 SeamFree Open Hinge Nub Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

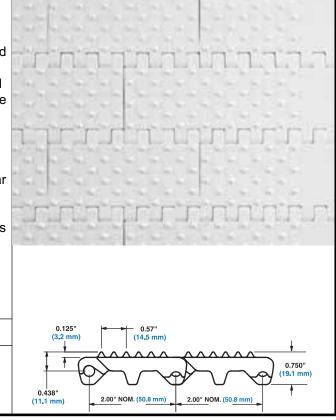
Belt Data														
Belt Material	Material		Belt Temperature Range Strength (continuous)			W	Belt Weight	1=Wł		Accepta ie, 3=Na	•	oility: ural, 4=Grey		
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e	
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.76	8.58	•	1			3	•	
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.84	8.97	•	3			3	•	
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.72	13.26	•	1			3	•	

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Cone '		
	in.	mm		
Pitch	2.00	50.8		
Minimum Width	4	102		
Width Increments	0.66	16.8		
Opening Size (approximate))			
Open Area	0	%		
Hinge Style Open				
Drive Method	Center	r-driven		
Product	Notes			
 Always check with Custome width measurement and stord designing a conveyor or or control closed upper surface with full rods. Standard Flights and Sidegua available. Cone standard indent is 1.3 in Not recommended for back-u required, contact Intralox Sale 	cck status be dering a belt. y flush edges ards (without con. (33 mm). p conditions. It es Engineering	fore and recessed cones) are If values are		
Additional Information				
See "Belt selection process" (page 5) See "Standard belt materials" (page 18) See "Special application belt materials" (page 18) See "Friction factors" (page 31)				

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight			Agency	•	•		Grey	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry		CFA ^b	A ^c	Z ^d	Je	EU MC ^f
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.84	13.89	•	•	1	•	٠	•	3	•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service


- d. New Zealand Ministry of Agriculture and Forestry
- Japan Ministry of Health, Labour, and Welfare
 European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

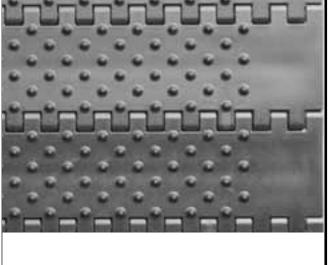
	Oper	Hinge (Cone Top™
	in.	mm	- 40 00000
Pitch	2.00	50.8	The state of the s
Minimum Width	6	152	-51
Width Increments	0.66	16.8	
Opening Size (approximate)	-	-	500 50
Open Area	0	1000	
Hinge Style	Op	en	-
Drive Method	Center	-driven	
Product	Notes		
 Always check with Custome width measurement and stodesigning a conveyor or or Cone standard indent is 1.3" Closed upper surface with full 			

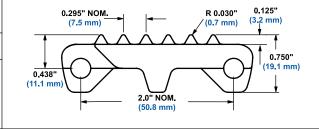
- rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 800 Open Hinge Cone Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Standard flights and sideguards (without cones) are available.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data														
Belt Material	Standard Rod Material		Belt Strength	Temperatu (contin	•			Belt Agency Acceptability: Weight 1=White, 2=Blue, 3=Natural, 4=Gre						
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96	•				3		•
Polyethylene	Polyethylene	500	740	-50 to 150	-46 to 66	1.70	8.30	•				3		•
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.3	•				3		•

- USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



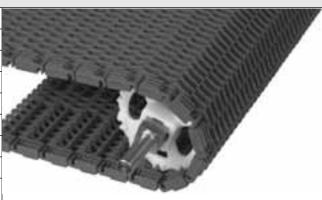

Se	eamFree™	M Open	Hinge Cone Top™
	in.	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	A CONTRACTOR OF THE PARTY OF TH
Width Increments	0.66	16.8	
Opening Sizes (approx.)	-	-	
Open Area	0,	%	
Hinge Style	Ор	en	
Drive Method	Center-	-Driven	
Daga daga	4 NI - 4		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Cone height is 0.125 in. (3.2 mm).
- Cone spacing is 0.295 in. (7.5 mm).
- Standard cone indent is 1.3 in. (33 mm).
- Closed upper surface with fully flush edges and recessed rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 800 SeamFree Open Hinge Cone Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.

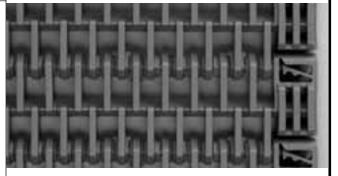
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

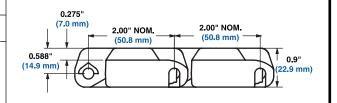
	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)		Belt Weight			ncy Acceptability Blue, 3=Natural,					
	Ø 0.24 in. (6.1 mm)		kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e		
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.70	8.29	•	1			3	•		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.76	8.58	•	3			3	•		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.61	12.72	•	1			3	•		

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Raised
	in.	mm
Pitch	2.00	50.8
Minimum Width	18	457
Width Increments	2.00	50.8
Opening Sizes (approx.)	0.51 x 0.49	12.9 x 12.4
Open Area	40	%
Hinge Style	Ор	en
Drive Method	Center-	-Driven
D., ada, a	4 11-4	

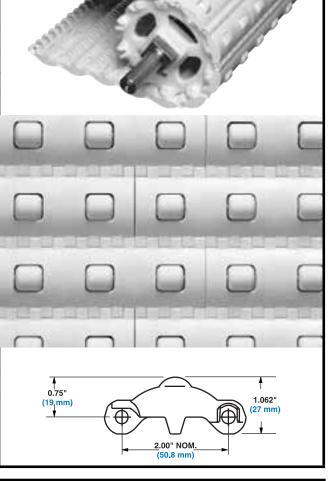

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Raised Ribs extend 0.275 in. (7.0 mm) above basic module with fully flush edges.
- Open slots improve drainage and cleanability.
- Finger transfer plates are available.
- Fully compatible with Series 800 EZ Clean Angled Sprockets.
- Cam-link design hinges provide easy cleaning with greater hinge and rod exposure as the belt moves around the sprockets.
- Uses a patented edge headless rod retention system.


Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Rib

	Belt Data													
Belt Material	Standard Rod Material	BS	· • • • • • • • • • • • • • • • • • • •						Aç 1-White,	gency A 2-Blue,		•		Э у
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.48	7.23	•				3		
Enduralox PP	Polypropylene	1000	1490	34 to 220	1 to 104	1.48	7.23	•						

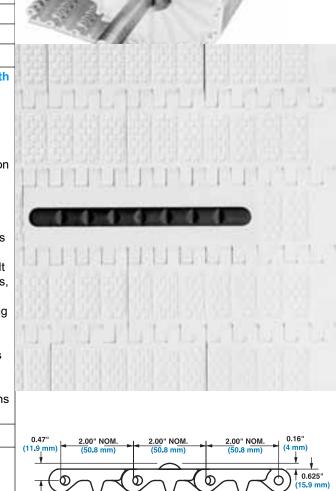

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Roller	Top^{TM}
	in.	mm	200
Pitch	2.00	50.8	
Minimum Width	See Prod	uet Netes	
Width Increments	See Plou	uci notes	
Opening Size (approximate)	-	-	
Open Area	39	%	46
Hinge Style	Ор	en	
Drive Method	Center	-driven	
Duaduat	Natas		-

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- · Fully flush edges and recessed rods.
- Impact resistant belt designed for tough box and package, low back pressure applications.
- Back-up load is 5-10% of product weight.
- Roller diameter 0.70 in. (17.8 mm). Roller length 0.825 in. (20.9 mm).
- Roller spacing 2.0 in. (50.8 mm).
- Standard roller indent is 0.60 in. (15 mm)
- Custom-built in widths of 4 in. (102 mm) and 6 in.
 (152 mm) and from 10 in. (254 mm) and up in 2.00 in.
 (50.8 mm) increments.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

				Ве	It Data									
Belt Material	Standard Rod Material	BS	Strength Temperature Range (continuous) Belt Weight 1=White, 2=Blue,							•		•	Grey	
	Ø 0.24 in. (6.1 mm)		kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	1000	1490	34 to 200	1 to 93	2.93	14.34	•				3		•
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	2.99	14.62	•				3		•
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	4.11	20.10	•				3		•


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

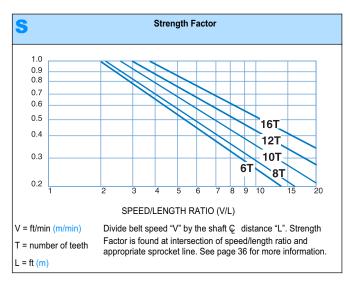
	R	ounded F	riction Top
	in.	mm	
Pitch	2.00	50.8	100
Minimum Width	8	203	
Width Increments	0.66	16.8	45
Opening Size (approximate)	-	-	Alex.
Open Area	C)%	33
Hinge Style	0	pen	2 50
Drive Method	Cente	r-driven	100
Produc	t Notes		

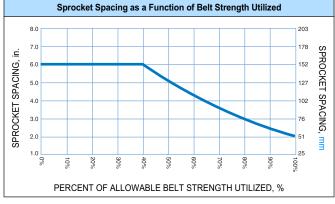
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- No mistracking or "stick-slip" effect, even on long runs: The Intralox belt is positively tracked by Intralox's sprocket drive system instead of unreliable friction rollers.
- Thermally bonded rubber won't peel off: Only Intralox's Friction Top surface is co-molded (thermally bonded) with the plastic base instead of glued on or mechanically fastened. The Rounded Friction Top module is black rubber on a white PP composite base module.
- No ice clogging: ice simply pops out of the Intralox belt hinges as the belt travels around the drive sprockets.
- Easy to maintain and repair: Intralox's re-usable headless belt rods are quickly removed and installed with only minimal tools, so one can replace individual modules in minutes.
- No tensioning required, which eliminates expensive tensioning systems.
- Lower construction cost: Intralox's sprocket drive requires far less space than a friction roller system, allowing shallow, less expensive trench construction.
- Lower wearstrip replacement cost: Flat Top edge modules prevent premature wearstrip erosion-the smooth surface spans 38.1 mm (1.5") from the outer edge.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	.		W	Belt Weight	1=W	Agen /hite, 2=E	cy Acce Blue, 3=		-		rey
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
UV Resistant Acetal	Acetal	2500	3713	-50 to 150	-46 to 66	2.78	13.59							

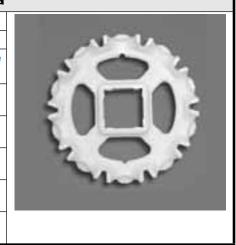
- USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

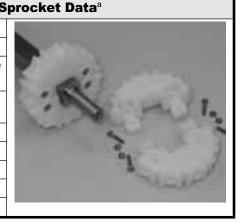



	Sprocket and Support Quantity Reference											
Belt Wic	dth Range ^a	Minimum Number of	W	Vearstrips								
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway								
2	51	1	2	2								
4	102	1	2	2								
6	152	2	2	2								
8	203	2	2	2								
10	254	2	3	2								
12	305	3	3	2								
14	356	3	3	3								
16	406	3	3	3								
18	457	3	3	3								
20	508	5	4	3								
24	610	5	4	3								
30	762	5	5	4								
32	813	7	5	4								
36	914	7	5	4								
42	1067	7	6	5								
48	1219	9	7	5								
54	1372	9	7	6								
60	1524	11	8	6								
72	1829	13	9	7								
84	2134	15	11	8								
96	2438	17	12	9								
120	3048	21	15	11								
144	3658	25	17	13								
		dd Number of Sprockets ^c at 152 mm) Ç Spacing	Maximum 9 in. (229 mm) © Spacing	Maximum 12 in. (305 mm) Ç Spacing								

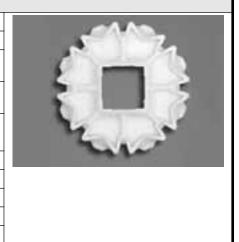
- If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.66 in. (16.8 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service.

 These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. Polyurethane sprockets require a maximum
- 4 in. (102 mm) centerline spacing.


 The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.

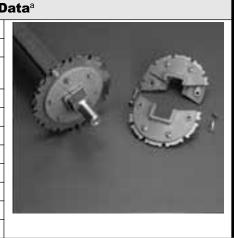

					E	Z Clea	n Mol	ded Sp	rocke	t Data
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm
6 (13.40%)	4.0	102	3.8	97	1.5	38	1.0	1.5	30	40
8 (7.61%)	5.2	132	5.0	127	1.5	38	1.0	1.5	30	40
10 (4.89%)	6.5	165	6.2	157	1.5	38		1.5		40
12 (3.41%)	7.7	196	7.5	191	1.5	38		1.5		40
16 (1.92%)	10.3	262	10.1	257	1.5	38		1.5		40

- Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.

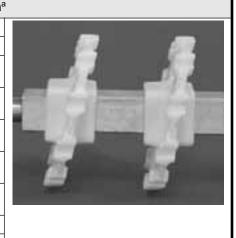

 b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885

			Ultra	a Abr	asion	Resis	tant S _l	plit Pol	lyuretl	hane S
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm
10 (4.89%)	6.5	165	6.2	157	1.5	38		1.5		40
12	7.7	196	7.5	191	1.5	38		1.5		40
(3.41%)								2.5		60
16	10.3	262	10.1	257	1.5	38		1.5		40
(1.92%)								2.5		60

- Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (48 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets. These sprockets are FDA approved.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885


						M	olded S	Sprock	et Dat	ta ^a		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	Sizes		
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric Sizes			
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm		
8 (7.61%)	5.2	132	5.0	127	1.5	38		1.5		40		
10	6.5	165	6.2	157	1.5	38		1.5		40		
(4.89%)								2.0				
								2.5		60		
12	7.7	196	7.5	191	1.5	38		1.5		40		
(3.41%)								2.5		60		
16	10.3	262	10.1	257	1.5	38		1.5		40		
(1.92%)								2.5		60		

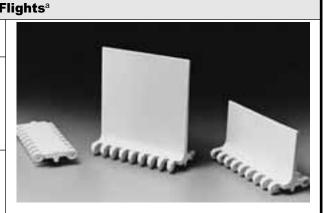
a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.



					Abra	sion R	esista	nt Spli	it Spro	cket [
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in. ^b	Width mm ^b	Round in.	Square in.	Round mm	Square mm
8	5.2	132	5.0	127	1.7	43		1.5		40
(7.61%)								2.5		60
10	6.5	165	6.2	157	1.7	43		1.5		40
(4.89%)								2.5		60
12	7.7	196	7.5	191	1.7	43		1.5		40
(3.41%)								2.5		60
16	10.3	262	10.1	257	1.7	43		1.5		40
(1.92%)								2.5		60

- Contact Customer Service for lead times.
- Single Plate split sprockets are available with a 1.5in. (38m) hub width. These sprockets are NOT recommended in abrasive applications

Angled EZ Clean Sprocket Data										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
6 (13.40%)	4.0	102	3.8	97	2.0	50.8		1.5		40
8 (7.61%)	5.2	132	5.0	127	2.0	50.8		1.5		40
10 (4.89%)	6.5	165	6.2	157	2.0	50.8		1.5		40
12 (3.41%)	7.7	196	7.5	191	2.0	50.8		1.5		40
16	10.3	262	10.1	257	2.0	50.8		1.5		40
(1.92%)								2.5		60


a. Contact Customer Service for lead times. Angled EZ Clean Sprockets can not be used with Series 800 Mesh Top

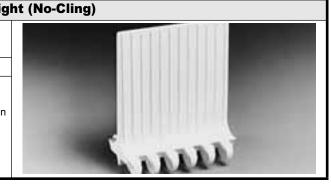
		Streamline F	
Available F	Flight Height	Available Materials	
in.	mm	Available Materials	
1	25		
2	51	Delivered described and Acadel Abdan	
3	76	Polypropylene, Polyethylene, Acetal, Nylon, Detectable Polypropylene ^b	
4	102		
6	152		
Mate. Flights on	n ha aut dayun ta	any haight required for a particular	

Note: Flights can be cut down to any height required for a particular

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flat Top flight is smooth (Streamline) on both sides. **Note:** The minimum indent (without sideguards) is 1.3 in. (33 mm). Note: An extension can be welded at a 45° angle to create a bent flight.

- a. Contact Customer Service for availability.b. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.



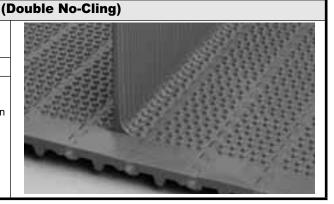
Flat Top Base Fl				
Available F	light Height	Available Materials		
in.	mm	Available Materials		
4	102	Polypropylene, Polyethylene, Acetal		

Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in. (33 mm).

		Nub Top Base Flight (
Available F	light Height	Available Materials	
in.	mm	Avaliable Materials	
4	102	Polypropylene, Polyethylene, Acetal	


Note: Flights can be cut down to any height required for a particular

Note: Each flight rises out of the center of its supporting module, molded as an

integral part. No fasteners are required.

Note: No-Cling vertical ribs are on both sides of the flight.

Note: The minimum indent (without sideguards) is 1.3 in. (33 mm).

Flush Grid Base Flight (No-Cling)				
Available F	light Height	Available Materials		
in.	mm	Avaliable Materials	/	
2	51	Polypropylene, Polyethylene, Acetal		
4	102	Folypropylerie, Folyetifylerie, Acetai	100	

Note: Flights can be cut down to any height required for a particular

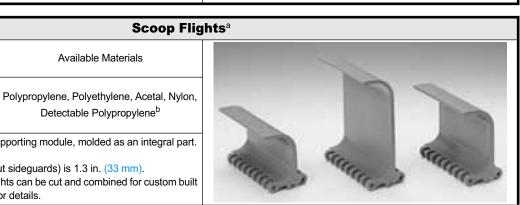
Note: The No-Cling vertical ribs are on both sides of the flight.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in. (33 mm).

Note: These flights cannot be used with the S800 Perforated Flat Top (Slotted

version with 18% open area).


Scoop Fli		
Available Materials	light Height	Available F
Available Waterials	mm	in.
		_

Note: Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.

Detectable Polypropylene^b

Note: The minimum indent (without sideguards) is 1.3 in. (33 mm).

Note: Bucket flights and Scoop flights can be cut and combined for custom built belts. Contact Customer Service for details.

Contact Customer Service for availability.

102

152

4

Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.


		Bucket Fl	
Available Flight Height		Available Materials	
in.	mm	Available Materials	
2.25 ^b	57 ^b		
3	76	Polypropylene, Polyethylene, Acetal,	
4	102	Detectable Polypropylene ^c	
6	152		

Note: Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in. (33 mm).

Note: Bucket flights and Scoop flights can be cut and combined for custom built

belts. Contact Customer Service for details.

- Contact Customer Service for availability.
- 2.25in. (57m) Bucket Flight only available in Polypropylene.
- Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

		3-Piece Perforated Bucke	
Available F	light Height	Available Materials	
in.	mm	Available Materials	
4	102	Polypropylene, Polyethylene ^a , Acetal ^a	
Note: Flights consist of 3 pieces: the base module, the attachment, and the			

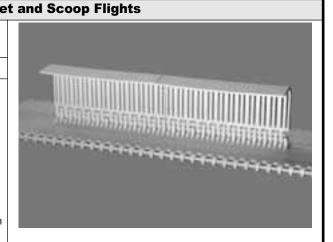
rod.

Note: Flight surface has 30% open area. Opening size (approximate) is 0.130 in. (3.3 mm) × 2.40 in. (70.0 mm).

Note: Belt surface has 0% open area. Base Module is \$800 Flat Top Open

Hinge design.

Note: Open slots improve drainage for inclines.


Note: The minimum indent (without Sideguards) is 2.00 in. (50.8 mm).

Note: Flights can be cut and combined for custom built belts. Contact

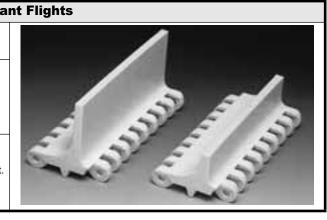
Customer Service for details.

Note: Not for use with S800 Perforated Flat Top (slotted version with 18% open area) and S800 Flush Grid Nub Top.

Note: Bucket profile has a 0.27 in. (6.9 mm) gap between belt's top surface and bottom surface of bucket side panel.

a. Contact Customer Service for availability.

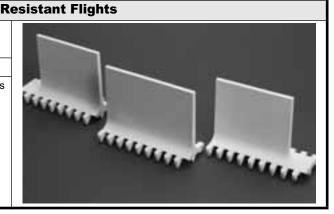
Combining Bucket Flights and Scoop Flights 6 in. (152 mm) bucket flights with 3 in. (76 mm) bucket flight and scoop 4 in. (102 mm) bucket flight and 6 in. (152 mm) bucket flight and scoop flights, no indent indent flights, no indent scoop flights with indent Note: Bucket flights and Scoop flights can be cut and combined for custom built belts. Contact Customer Service for details.



		Impact Resista	
Available Flight Height		Available Materials	
in.	mm	Available Materials	
1	25		
2	51	Acatal	
3	76	- Acetal	
4	102		

Note: Flights can be cut down to any height required for a particular application

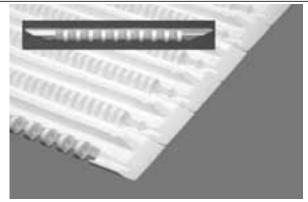
Note: Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.


Note: The minimum indent (without sideguards) is 1.3 in. (33 mm).

Open Hinge impa		
Available Materials	light Height	Available F
Available ividiterials	mm	in.
Polypropylene, Polyethylene, Acet	102	4

Note: Each flight rises out of the center of its supporting module. No fasteners are required

Note: The minimum indent (without sideguards) is 1.3 in. (33 mm) **Note:** Standard 4 in. (102 mm) height can be cut to suit application.



Available Materials

Polypropylene, Acetal

Note: Compatible with Series 800 Flat Top and Series 800 Mesh Top

Note: Designed to accept headed plastic rods **Note:** Steel rods will be retained with plastic rodlets

		Sidegua	
Available Sizes		Available Materials	
in.	mm	Avaliable Materials	
2	51	Polypropylene, Polyethylene, Acetal, Detectable Polypropylene ^a	
3	76		
4	102		

Note: Standard overlapping design and are an integral part of the belt, with no fasteners required.

Note: Fastened by the hinge rods.

Note: The normal gap between the sideguards and the edge of a flight is 0.3 in. (8 mm).

Note: When going around the 6 and 8 tooth sprocket, the sideguards will fan out, opening a gap at the top of the sideguard which may allow small products to fall out. The sideguards stay completely closed when going around the 10, 12 and 16 tooth sprockets.

Note: The minimum indent is 0.7 in. (18 mm) except for Flush Grid which is 1.3 in. (33 mm).

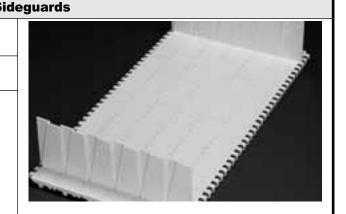
Note: Detectable Polypropylene is only available in 2 in. (51 mm) and 4 in. (102 mm).

a. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

Molded-in 3		
izes Available Materials	Available Sizes	
mm	mm	in.
102 Polypropylene, Polyethylene, Acetal,	102	4
Detectable Polypropylene ^a		

Note: Molded as an integral part of the belt, with no fasteners required.

Note: Part of Intralox's EZ Clean product line.


Note: Standard 4 in. (102 mm) height can be cut to suit application.

Note: Overlapping sideguards open fully when wrapping around sprocket, allowing greater access during cleaning. Sideguards will open partially on forward bends of elevating conveyors.

Note: The indent is 1.3 in (33 mm).

Note: The minimum backbend radius is 10 in. (254 mm).

Note: Sideguards can be spliced into all Series 800 Belt Styles, except Series 800 Perforated Flat Top (18% open Area) and Series 800 Flush Grid Nub Top.

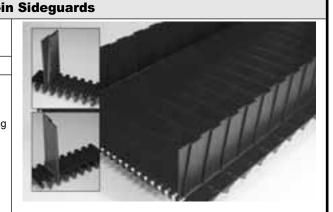
a. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

		Nub Top Molded-i
Availab	ole Sizes	Available Materials
in.	mm	Available Materials
4	102	Acetal, Polypropylene

Note: Molded as an integral part of the belt, with no fasteners required.

Note: Part of Intralox's EZ Clean product line.

Note: Standard 4 in. (102 mm) height can be cut to suit application.


Note: Nub Top™ design and No Cling rib feature provide a non-stick conveying surface that delivers superior product release and cleanability.

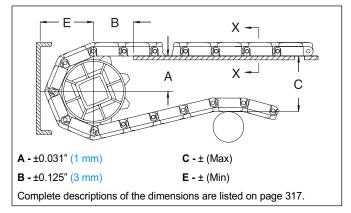
Note: Overlapping sideguards open fully when wrapping around sprocket, allowing greater access during cleaning. Sideguards will open partially on forward bends of elevating conveyors.

Note: The indent is 1.3 in (33 mm).

Note: The minimum backbend radius is 10 in. (254 mm).

Note: Sideguards can be spliced into all Series 800 Belt Styles, except Series 800 Perforated Flat Top (18% open Area) and Series 800 Flush Grid Nub Top.

SERIES 800

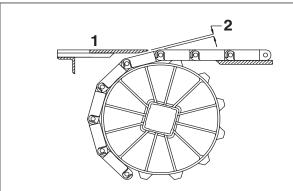

	Scoop/Bucket Flight Cross Sectional Area for Vertical Incline											
in.	mm	sq. in.	sq. mm	Note: Minimum row spacing is 6 in. (152 mm) for 6 in. (152 mm) Scoop/								
Scoo	p Height	A	rea	Buckets and 4 in. (102 mm) for all other sizes.								
3	76	4.3	2774	1 ——								
4	102	6.0	3871	R 0.1" (2.5 mm)								
6	152	9.5	6129									
Bucke	et Height	A	rea	0.5"								
2.25	57	2.3	1484	(12.7 mm) (7.6 mm) 2" (50.8 mm)								
3.00	76	3.31	2135	R 1.0" (35.4 mm)								
4.00	102	4.68	3019									
6.00	152	7.45	4806									
				1 - Height 2 - Area								

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Sprocket Description		Α		В		С		Е		
Pitch D	iameter	No. Teeth	Range (Botto	m to Top)	in	mana	in	100 100	in	na ma
in.	mm	No. reem	in.	mm	in.	mm	in.	mm	in.	mm
SERIE			N HINGE FLAT TO						TOUGH	FLAT
		·	RATED FLAT TOF	. `	, ,		-			
4.0	102	6	1.42-1.69	36-43	1.73	44	4.00	102	2.38	60
5.2	132	8	2.09-2.29	53-58	2.00	51	5.20	132	2.98	76
6.5	165	10	2.78-2.94	71-75	2.16	55	6.50	165	3.63	92
7.7	196	12	3.41-3.54	87-90	2.45	62	7.70	196	4.23	107
10.3	262	16	4.74-4.84	120-123	2.84	72	10.30	262	5.53	140
			SERI	ES 800 MINI	RIB					
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.09-2.29	53-58	2.00	51	5.33	135	3.10	79
6.5	165	10	2.78-2.94	71-75	2.16	55	6.63	168	3.75	95
7.7	196	12	3.41-3.54	87-90	2.45	62	7.83	199	4.35	110
10.3	262	16	4.74-4.84	120-123	2.84	72	10.43	265	5.65	144
	SERIE	S 800 NUB TO	P, FLUSH GRID	NUB TOP, SE	EAMFRE	Е™ ОР	EN HING	E NUB	ТОР	
4.0	102	6	1.42-1.69	36-43	1.73	44	4.10	104	2.48	63
5.2	132	8	2.10-2.30	53-58	1.98	50	5.33	135	3.09	78
6.5	165	10	2.77-2.92	70-74	2.18	55	6.57	167	3.71	94
7.7	196	12	3.42-3.55	87-90	2.43	62	7.83	199	4.34	110
10.3	262	16	4.72-4.81	120-122	2.88	73	10.35	263	5.60	142
	SERIES 8	300 CONE TO	P, OPEN HINGE (ONE TOP, S	EAMFR	EE™ OF	PEN HIN	GE CON	IE TOP	
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.10-2.30	53-58	1.98	50	5.35	136	3.11	79
6.5	165	10	2.77-2.92	70-74	2.18	55	6.60	168	3.74	95
7.7	196	12	3.42-3.55	87-90	2.43	62	7.85	199	4.36	111
10.3	262	16	4.72-4.81	120-122	2.88	73	10.38	264	5.63	143
			SERIES	800 ROLLE	R TOP					
4.0	102	6	1.42-1.69	36-43	1.73	44	4.44	113	2.81	71
5.2	132	8	2.10-2.30	53-58	1.98	50	5.66	144	3.43	87
6.5	165	10	2.77-2.92	70-74	2.18	55	6.91	176	4.05	103



Sprocket Description		A		В		С		E			
Pitch D	iameter	No. Teeth	Range (Botto	m to Top)	in.	mm	in.	mm	in.	P2 P2	
in.	mm	No. reem	in.	mm	"".		111.	111111	111.	mm	
7.7	196	12	3.42-3.55	87-90	2.43	62	8.17	207	4.68	119	
10.3	262	16	4.72-4.81	120-122	2.88	73	10.69	272	5.94	151	
			SERIE	S 800 RAISE	D RIB						
4.0	102	6	1.42-1.69	36-43	1.73	44	4.28	109	2.65	67	
5.2	132	8	2.09-2.29	53-58	2.00	51	5.48	139	3.25	83	
6.5	165	10	2.78-2.94	71-75	2.16	55	6.78	172	3.90	99	
7.7	196	12	3.41-3.54	87-90	2.45	62	7.98	203	4.50	114	
10.3	262	16	4.74-4.84	120-123	2.84	72	10.58	269	5.80	147	
			SERIES 800	ROUND FRI	CTION T	OP					
4.0	102	6	1.42-1.69	36-43	1.74	44	4.16	106	2.53	64	
5.2	132	8	2.09-2.29	53-58	2.00	51	5.36	136	3.13	80	
6.5	165	10	2.78-2.94	71-75	2.17	55	6.66	169	3.78	96	
7.7	196	12	3.40-3.54	86-90	2.45	62	7.86	200	4.38	111	
10.3	262	16	4.74-4.84	120-123	2.84	72	10.46	266	5.68	144	

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

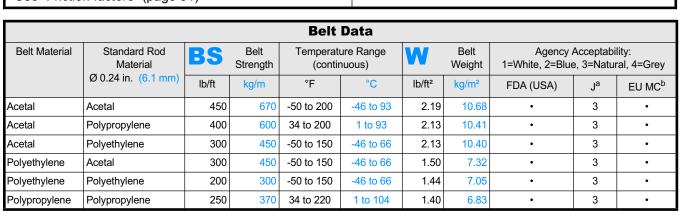
1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in.	mm	
in.	mm	NO. Teetii			
4.0	102	6	0.268	6.8	
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	
10.3	262	16	0.098	2.5	

0.625"


intralox.			SERIES 850
Sea	mFree™	Minimu	ım Hinge Flat Top
	in.	mm	11 11
Pitch	2.00	50.8	
Minimum Width	6	152	1/ //
Width Increments	1.00	25.4	3 3 4
Opening Size (approximate)	-	-	251313
Open Area 0%		STATISTICA NO 18 1	
Hinge Style Open		11/1/1/2/	
Drive Method	Center	r-driven	100000
Product	Notes	-n-11-n-11-n-11-n	
 Always check with Custome width measurement and sto designing a conveyor or order. Smooth, closed upper surface recessed rods. Cam-link designed hinges - exarea as the belt goes around the lintralox feature allows unsurpathis area. 	ck status be dering a belt. with fully flus opose more he sprocket.	ana Wana Wana Wan	
 Fully sculpted and radiused or sharp corners to catch and ho Drive Bar - like Series 1600 ar bar on the underside of Series Minimum Hinge Flat Top chan 	ld debris. nd Series 180 s 850 SeamFi inels water ar	analuana luan luan	
the outside of the belt for easi drive bar's effectiveness has band in field tests.			

Belts over 36" (914 mm) will be built with multiple modules per row, but seams will be minimized.

Designed for use with Series 800 Angled EZ Clean Sprockets, but fully compatible with standard Series 800

- **Additional Information**
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

EZ Clean Sprockets.

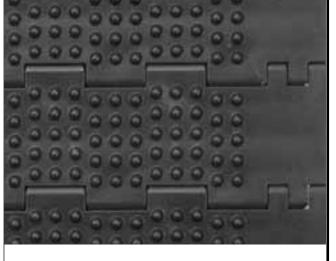
0.313

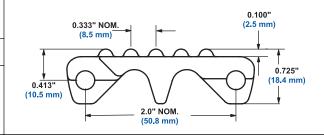
(7.9 mm)

2.00" NOM.

(50,8 mm)

2.00" NOM


- Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



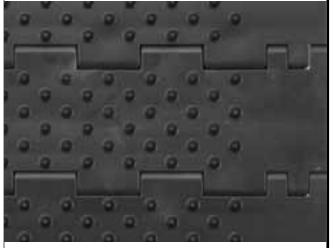
Se	amFree [™]	Minimu	m Hinge	Nub	Top [™]
	in.	mm		988	
Pitch	2.00	50.8			
Minimum Width	6	152	Same with		
Width Increments	1.00	25.4		-	
Opening Sizes (approx.)	-	-	802		
Open Area	0	%	. 4		
Hinge Style	Op	pen			
Drive Method	Center	-Driven			
Duadua	4 11-4				

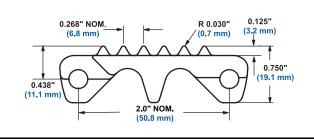
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Nub height is 0.100 in. (2.5 mm).
- Nub spacing is 0.333 in. (8.5 mm).
- Standard nub indent is 1.3 in. (33 mm).
- Closed upper surface with fully flush edges and recessed
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 850 SeamFree Minimum Hinge Nub Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data													
Belt Material Standard Roc Material		BS	Belt Strength			W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey			Grey		
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e
Acetal	Acetal	450	670	-50 to 200	-46 to 93	2.39	11.67	•	1			3	•
Acetal	Polypropylene	400	600	34 to 200	1 to 93	2.33	11.38	•	3			3	•
Acetal	Polyethylene	300	450	-50 to 150	-46 to 66	2.33	11.38	•	3			3	•
Polyethylene	Acetal	300	450	-50 to 150	-46 to 66	1.64	8.01	•	3			3	•
Polyethylene	Polypropylene	200	300	-50 to 150	-46 to 66	1.58	7.71	•	3			3	•
Polypropylene	Polypropylene	250	370	34 to 220	1 to 104	1.53	7.47	•	1			3	•

- USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



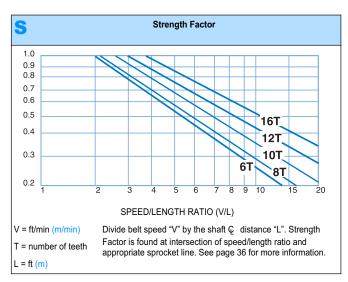

_		
Sea	mFree™ I	Minimum
	in.	mm
Pitch	2.00	50.8
Minimum Width	6	152
Width Increments	1.00	25.4
Opening Sizes (approx.)	-	-
Open Area	09	%
Hinge Style	Ор	en
Drive Method	Center-	Driven
Produc	t Notes	

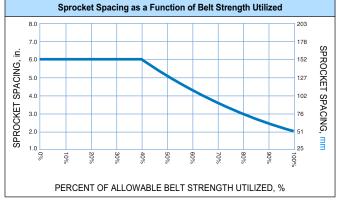
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Cone height is 0.125 in. (3.2 mm).
- Cone spacing is 0.268 in. (6.88 mm).
- Standard cone indent is 1.3 in. (33 mm).
- Closed upper surface with fully flush edges and recessed rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 850 SeamFree Minimum Hinge Cone Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data												
Belt Material	Standard Rod Material	BS	BS Belt Strength		Temperature Range (continuous)		Belt Agency Accept Weight 1=White, 2=Blue, 3=N				•		
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e
Acetal	Acetal	450	670	-50 to 200	-46 to 93	2.28	11.13	•	1			3	•
Acetal	Polypropylene	400	600	34 to 200	1 to 93	2.22	10.84	•	3			3	•
Acetal	Polyethylene	300	450	-50 to 150	-46 to 66	2.22	10.84	•	3			3	•
Polyethylene	Acetal	300	450	-50 to 150	-46 to 66	1.56	7.62	•	3			3	•
Polyethylene	Polypropylene	200	300	-50 to 150	-46 to 66	1.50	7.32	•	3			3	•
Polypropylene	Polypropylene	250	370	34 to 220	1 to 104	1.47	7.18	•	1			3	•

- USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.




Sprocket and Support Quantity Reference											
Belt Wid	th Range ^a	Minimum Number of	W	earstrips							
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway							
2	51	1	2	2							
4	102	1	2	2							
6	152	2	2	2							
8	203	2	2	2							
10	254	2	3	2							
12	305	3	3	2							
14	356	3	3	3							
16	406	3	3	3							
18	457	3	3	3							
20	508	5	4	3							
24	610	5	4	3							
30	762	5	5	4							
32	813	7	5	4							
36	914	7	5	4							
42	1067	7	6	5							
48	1219	9	7	5							
54	1372	9	7	6							
60	1524	11	8	6							
72	1829	13	9	7							
84	2134	15	11	8							
96	2438	17	12	9							
120	3048	21	15	11							
144	3658	25	17	13							
		dd Number of Sprockets ^c at 52 mm) Ç Spacing	Maximum 9 in. (229 mm) ♀ Spacing	Maximum 12 in. (305 mm) € Spacing							

- If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.66 in. (16.8 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service.

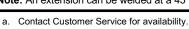
 These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. Polyurethane sprockets require a maximum
- 4 in. (102 mm) centerline spacing.

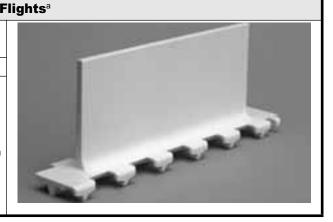
 The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset
- chart on page 304 for lock down location.

	Angled EZ Clean Sprocket Data													
No. of Teeth (Chordal	Nom. Pitch Dia. in.	Nom. Pitch Dia.	Nom. Outer Dia.	Nom. Outer Dia.	Nom. Hub Width	Nom. Hub Width		vailable E Sizes	1	s Sizes				
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm				
6 (13.40%)	4.0	102	3.8	97	2.0	50.8		1.5		40				
8 (7.61%)	5.2	132	5.0	127	2.0	50.8		1.5		40				
10 (4.89%)	6.5	165	6.2	157	2.0	50.8		1.5		40				
12 (3.41%)	7.7	196	7.5	191	2.0	50.8		1.5		40				
16 (1.92%)	10.3	262	10.1	257	1.5	38		1.5 2.5		40 60				

a. Contact Customer Service for lead times. Angled EZ Clean Sprockets can not be used with Series 800 Mesh Top

Streamline									
Available I	Flight Height	Available Materials							
in.	mm	Avaliable iviaterials							
4	102	Polypropylene, Acetal							

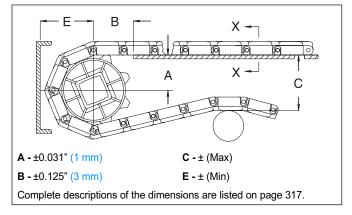

Note: Flights are available in the SeamFree[™] design at 12 in. (304 mm) wide; flighted belts greater that 12 in. (304 mm) wide are available with seams minimized


Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flat Top flight is smooth (Streamline) on both sides. Note: Molded-in, 1.3 in. (33 mm) indent from each edge.

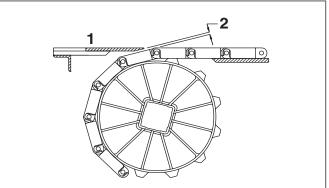
Note: An extension can be welded at a 45° angle to create a bent flight.



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.


Spr	ocket De	scription	Α		E	3	(;	E		
Pitch D	Diameter	No. Teeth	Range (Botto	m to Top)	in.	mm	in.	mm	in.	mm	
in.	mm	No. reem	in.	mm	111.	mm		111111	111.		
			SEAMFREE™ N	NINIMUM HIN	IGE FLA	T TOP					
4.0	102	6	1.42-1.69	36-43	1.73	44	4.00	102	2.38	60	
5.2	132	8	2.09-2.29	53-58	2.00	51	5.20	132	2.98	76	
6.5	165	10	2.78-2.94	71-75	2.16	55	6.50	165	3.63	92	
7.7	196	12	3.41-3.54	87-90	2.45	62	7.70	196	4.23	107	
10.3	262	16	4.74-4.84	120-123	2.84	72	10.30	262	5.53	140	
	SEAMFREE™ MINIMUM HINGE NUB TOP										
4.0	102	6	1.42-1.69	36-43	1.73	44	4.10	104	2.48	63	
5.2	132	8	2.10-2.30	53-58	1.98	50	5.33	135	3.09	78	
6.5	165	10	2.77-2.92	70-74	2.18	55	6.57	167	3.71	94	
7.7	196	12	3.42-3.55	87-90	2.43	62	7.83	199	4.34	110	
10.3	262	16	4.72-4.81	120-122	2.88	73	10.35	263	5.60	142	
			SEAMFREE™ N	IINIMUM HIN	GE CON	IE TOP					
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64	
5.2	132	8	2.10-2.30	53-58	1.98	50	5.35	136	3.11	79	
6.5	165	10	2.77-2.92	70-74	2.18	55	6.60	168	3.74	95	
7.7	196	12	3.42-3.55	87-90	2.43	62	7.85	199	4.36	111	
10.3	262	16	4.72-4.81	120-122	2.88	73	10.38	264	5.63	143	

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

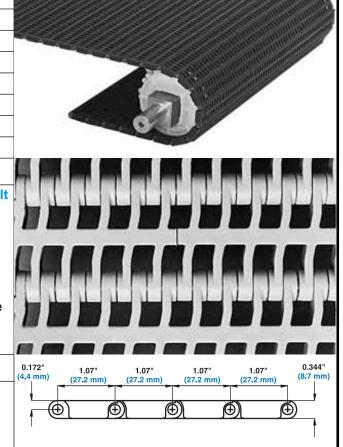
Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Gap				
Pitch D	iameter	No. Teeth	in.	mm		
in.	mm	NO. Teetii	111.			
5.2	132	8	0.200	5.1		
6.5	165	10	0.158	4.0		
7.7	196	12	0.132	3.4		

		Open	Grid
	in.	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	
Open Area	38	%	
Hinge Style	Ор	en	
Drive Method	Center-	-driven	The state of the s
Product	Notes		skakalalalalalala
 Always check with Custom width measurement and stone designing a conveyor or or Low-profile transverse ridges assist in moving product up in Large, open area allows for ending indent of the ridge is Not recommended for back-unvalues between product and Intralox Sales Engineering. 	ock status befordering a belt. 0.188 in. (4.8 inclines and does a certain and does are certain and conditions. It is belt are required.	mm) high wn declines. age. m). f friction ed, contact	
Additional l	nformatio	on	0.360" 1.07" 1.07" 1.07" 0.188" (9.1 mm) (9.7 0 mm) (9.7 0 mm) (4.8 mm)
 See "Belt selection process" See "Standard belt materials See "Special application belt See "Friction factors" (page 3 	"(page 18) <i>materials"</i> (pag	ge 18)	(9.1 mm) (27.2 mm) (27.2 mm) (27.2 mm) (4.8 mm) (0.532"

	Belt Data													
Belt Material	Standard Rod Material	Belt Temperature Range (continuous)				W	Belt Weight	1			ceptabili 3=Natura	ity: al, 4=Grey		
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.95	•	•		•		3	•
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.84	4.09	•	•		•		3	•
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.26	6.14	•	•		•		3	•
Acetal ^f	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.26	6.14	•	•		•		3	•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
 b. Canada Food Inspection Agency
 c. Australian Quarantine Inspection Service
 d. Japan Ministry of Health, Labour, and Welfare
 e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
 f. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.


		Flush	Grid
	in.	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	
Open Area	38	%	
Hinge Style	Ор	en	0
Drive Method	Center-	-driven	
Product	Notes		
 Always check with Custom width measurement and sto designing a conveyor or or Open pattern with smooth up edges. 	ock status bef dering a belt.	ore	

Additional Information

rod in place. The rodlets are made from the same

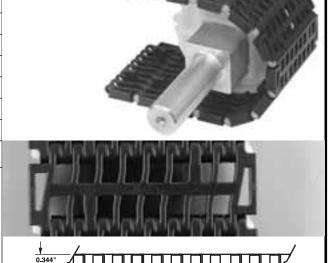
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

material as the main rod.

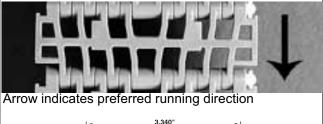
	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	Temperatu (contir	•	W	Belt Weight	1	Ag =White, 2	ency Acc 2=Blue, 3	•	•	Grey	
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	Jc	Z ^d	EU MC ^e
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.76	3.70	•	•		•	3	•	•
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.81	3.96	•	•		•	3	•	•
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.15	5.62	•	•		•	3		•
EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.15	5.62							
FR-TPES	Polypropylene	750	1120	40 to 150	4 to 66	1.19	5.81							
FDA HR Nylon ^f	FDA Nylon	1200	1790	-50 to 240	-46 to 116	1.10	5.40	•						
Non FDA HR Nylon	Non FDA Nylon	1200	1790	-50 to 310	-46 to 154	1.10	5.40							
Acetal ^g	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.15	5.62	•	•		•	3		•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.

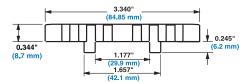
 European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date. This product may not be used for food contact articles that will come in contact with food containing alcohol.
- Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.



	Mold	to Width	r Flush Grid
	in.	mm	
Pitch	1.07	27.2	
	3.25	83	
Molded Widths	4.5	114	
iviolaea vviatris	7.5	191	
	-	85	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	3
Open Area	38	3%	4
Hinge Style	Op	en	
Drive Method	Center	-driven	


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Tracking tabs provide lateral tracking.
- Series 900 Mold To Width belts are boxed in 10 ft. (3.05 m) increments.
- Width tolerances for the **Series 900 Mold To Width** belts are +0.000/-0.020 in. (+0.000/-0.500 mm).
- One sprocket can be placed on the 3.25 in. (83 mm) and 85 mm mold to width belt. Up to three sprockets can be placed on the 4.5 in. (114 mm) mold to width belt. Up to five sprockets can be placed on the 7.5 in. (191 mm) mold to width belt.
- The Series 900 Mold To Width belt should not be used with sprockets smaller than a 3.5 in. (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, the split sprocket should not be used.

Additional Information


- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

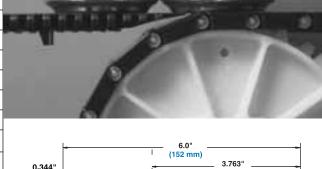
Series 900 Flush Grid Mold to Width

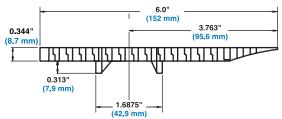
1.688"

Series 900 Flush Grid 85 mm Mold to Width

	Belt Data												
Belt \	Nidth	Belt Material	Standard Rod Material	BS	Belt Strength	Temperatu (contin	•	W	Belt Weight	, , ,		•	
inch	(mm)		Ø 0.18 in. (4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	J ^a	EU MCb	
3.25	83	Polypropylene	Nylon	130	59	34 to 220	1 to 104	0.31	0.46	•	3	•	
3.25	83	Acetal	Nylon	250	113	-50 to 200	-46 to 93	0.42	0.62	•	3	•	
4.5	114	Polypropylene	Nylon	263	120	34 to 220	1 to 104	0.39	0.58	•	3	•	
4.5	114	Acetal	Nylon	555	252	-50 to 200	-46 to 93	0.54	0.80	•	3	•	
7.5	191	Polypropylene	Nylon	438	199	34 to 220	1 to 104	0.59	0.88	•	3	•	
7.5	191	Acetal	Nylon	800	363	-50 to 200	-46 to 93	0.85	1.26	•	3	•	
	85	Acetal	Nylon	275	125	-50 to 200	-46 to 93	0.38	0.57	•	3	•	

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

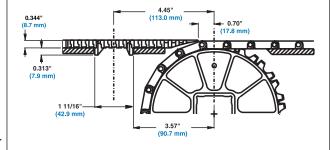



	ONEPIEC	E™ Live T	ransfer Flush Grid
	in.	mm	DUP STATE
Pitch	1.07	27.2	The Person
Minimum Width	4.7	119	LEADER DAY
Width Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	1
Open Area	38	3%	
Hinge Style	Op	en	
Drive Method	Center	-driven	/s, /
	-		7

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Transfer edge is an integral part of this belt.
- For custom belt widths please contact Customer Service.
- Molded tracking tabs fit into standard 1-3/4 in. (44.5 mm) wearstrip tracks insuring proper belt alignment.
- Built with nylon rods for superior wear resistance.
- Also available in a 4.7 in. (119 mm) wide single tracking tab belt and 6 in. (152 mm) wide double tracking tab belt.
- For belt strength calculations, subtract 1.5 in. (38 mm) from actual belt width.
- When product is moving from the transfer belt to a takeaway belt, the top of the transfer belt should be 0.06 in. (1.5 mm) above the top of the takeaway belt. When product is moving from the infeed belt onto the transfer edge, the top of the belts should be level.
- You may need to include a fixed frame support member beneath the ONEPIECE™ Live Transfer belt prior to the actual transfer. This will insure that the ONEPIECE™ Live Transfer belt does not snag when it intersects with the takeaway belt. See See "Fig. 3–31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECE™ LIVE TRANSFER BELT" (page 336).
- The Series 900 ONEPIECE™ Live Transfer belt should not be used with sprockets smaller than a 3.5 in. (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in. (89 mm) pitch diameter is required, the split sprocket should not be used.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

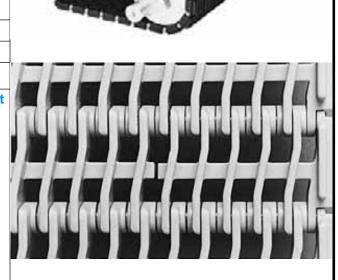


6.0 in. (152 mm) Double Tracking Tab belt

4.7 in. (119 mm) Single Tracking Tab belt

	Belt Data												
Belt Material	Standard Rod Material	BS	Belt Temperature Range Strength (continuous)		W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey						
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^a	EU MC ^b			
Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54	•	3	•			
Acetal	Nylon	1480	2200	-50 to 200	-46 to 93	1.15	5.62	•	3	•			
FR-TPES	Nylon	1000	1490	40 to 150	4 to 66	1.63	7.95						

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Raised
	in.	mm
Pitch	1.07	27.2
Minimum Width	2	51
Width Increments	0.33	8.4
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1
Open Area	38	%
Product Contact Area	35	%
Hinge Style	Ор	en
Drive Method	Center	-driven
	-	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Raised Ribs extend 3/16 in. (4.7 mm) above basic module, with fully flush edges.
- Can be used with Finger Transfer Plates eliminating product tippage and hang-ups.
- HR Nylon is used in dry, elevated temperature applications.
- HR Nylon belts use short rodlets to hold the main hinge rod in place. The rodlets are made from the same material as the main rod.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	\(\)													
	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	3. 3						
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.07	5.21	•	•		•		3	•
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.14	5.57	•	•		•		3	•
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.68	8.19	•	•		•		3	•
EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.68	8.19							
FDA HR Nylon ^f	Nylon	1200	1790	-50 to 240	-46 to 116	1.60	7.80	•						
Non FDA HR Nylon	Nylon	1200	1790	-50 to 310	-46 to 154	1.60	7.80							
Acetal ^g	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.68	8.19	•	•		•		3	•

0.391"

(9.9 mm)

1.07"

(27.2 mm)

1.07"

(27.2 mm)

1.07"

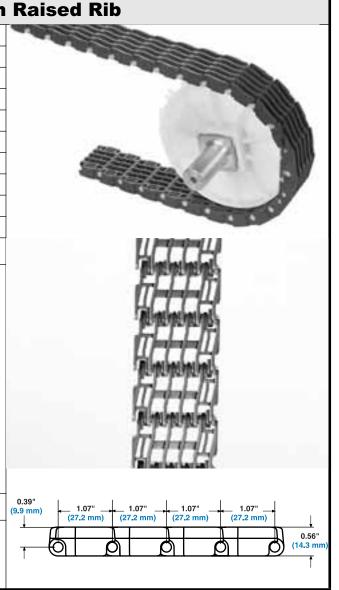
(27.2 mm)

1.07"

(27.2 mm)

0.563" (14.3 mm)

Rib


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- o. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- f. This product may not be used for food contact articles that will come in contact with food containing alcohol.
- g. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

	Mold t	to Width
	in.	mm
Pitch	1.07	27.2
	1.1	29
Molded Widths	1.5	37
(Blue Acetal)	1.8	46
	2.2	56
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1
Open Area	38% -	40%
Hinge Style	Clo	sed
Drive Method	Center	-driven

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Series 900 Mold To Width belts are boxed in 10 ft. (3.05 m) increments.
- Container stability is increased since the raised ribs span the entire belt width.
- These belts support both small and larger products, allowing easy change of product type.
- The 1.8 in. (46 mm) belt is also molded in grey polypropylene for applications where higher friction is needed.
- All belts come with nylon rodlets standard, providing longer service life.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt \	Width	Belt Material	Standard Rod Material Ø 0.18 in.	BS	Belt Temperature Strength (continu		J 1		Belt Weight	5,				
inch	(mm)		(4.6 mm)	lb	kg	°F °C		lb/ft	kg/m	FDA (USA)	Ja	EU		
												MCb		
1.1	29	Acetal	Nylon	140	64	-50 to 200	-46 to 93	0.19	0.29	•	3	•		
1.5	37	Acetal	Nylon	200	91	-50 to 200	-46 to 93	0.23	0.35	•	3	•		
1.8	46	Acetal	Nylon	230	104	-50 to 200	-46 to 93	0.29	0.43	•	3	•		
1.8	46	Polypropylene	Nylon	90	41	34 to 220 1 to 104		0.19	0.28	•	3	•		
2.2	56	Acetal	Nylon	200 ^c	91 ^c	-50 to 200	-46 to 93	0.34	0.50	•	3	•		

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- c. 270 lb (122 kg) for 2.2 in. (55 mm) with two (2) sprockets.

		Flat	Тор
	in.	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	~~~
Width Increments	0.33	8.4	
Opening Size (approximate)	-	-	
Open Area	0	%	
Hinge Style	Clo	sed	
Drive Method	Center	-driven	4
Product	Notes		
 Always check with Custome width measurement and stodesigning a conveyor or ore Smooth, closed surface with frecessed rods. Ideal for container handling, e HR Nylon is used in dry, eleval applications. HR Nylon belts use short rodi 	deck status be dering a belt. Jully flush edge especially glas ated temperat	fore es and es. ure	

_					4 -
Αc	DE	ITIO	nai	i into	rmation

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

material as the main rod.

	Belt Data													
Belt Material	Standard Rod Material		Belt Temperature F Strength (continuou		ure Range nuous)	J 1		Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey					rey	
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.96	4.69	•				3	•	•
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.01	4.95	•				3	•	•
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.50	7.30	•				3		•
EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.50	7.30							
FDA HR Nylon ^g	Nylon	1200	1790	-50 to 240	-46 to 116	1.40	6.80	•						
Non FDA HR Nylon	Nylon	1200	1790	-50 to 310	-46 to 154	1.40	6.80							
Acetal ^h	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.50	7.30	•						•

0.213"

(5.4 mm)

1.07"

(27.2 mm)

1.07"

(27.2 mm)

(

1.07"

(27.2 mm)

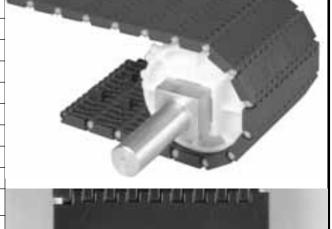
(

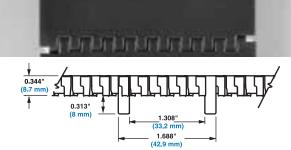
1.07"

(27.2 mm)

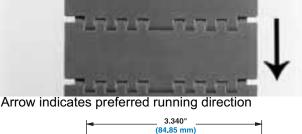
0.384"

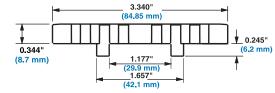
- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agencyc. Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date. This product may not be used for food contact articles that will come in contact with food containing alcohol.
- Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.




	Mold	l to Wid	Ith Flat Top
	in.	mm	San San San
Pitch	1.07	27.2	
	3.25	83	
Molded Widths	4.5	114	
Moided Widths	7.5	191	
	-	85	
Opening Size (approximate)	-	-	
Open Area	0,	%	-
Hinge Style	Ор	en	11
Drive Method	Center		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges
- Tracking tabs provide lateral tracking.
- Series 900 Mold To Width belts are boxed in 10 ft.
 (3.1 m) increments.
- One sprocket can be placed on the 3.25 in. (83 mm) and 85 mm mold to width belt. Up to three sprockets can be placed on the 4.5 in. (114 mm) mold to width belt. Up to five sprockets can be placed on the 7.5 in. (191 mm) mold to width belt.
- The Series 900 Mold To Width belt should not be used with sprockets smaller than a 3.5 in. (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in. (89 mm) pitch diameter is required, the split sprocket should not be used.


Additional Information

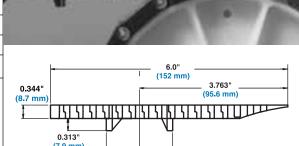

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Series 900 Flat Top Mold to Width

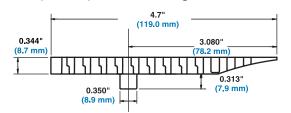
Series 900 Flat Top 85 mm Mold to Width

	Belt Data												
Belt \	Nidth	Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	Agency Ac 1=White, 2=Blue,	•	•	
inch	(mm)		Ø 0.18 in. (4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	J ^a	EU MC ^b	
3.25	83	Polypropylene	Nylon	130	59	34 to 220	1 to 104	0.37	0.55	•	3	•	
3.25	83	Acetal	Nylon	250	113	-50 to 200	-46 to 93	0.52	0.77	•	3	•	
4.5	114	Polypropylene	Nylon	263	120	34 to 220	1 to 104	0.52	0.77	•	3	•	
4.5	114	Acetal	Nylon	555	252	-50 to 200	-46 to 93	0.74	1.10	•	3	•	
7.5	191	Polypropylene	Nylon	438	199	34 to 220	1 to 104	0.83	1.24	•	3	•	
7.5	191	Acetal	Nylon	800	363	-50 to 200	-46 to 93	1.18	1.76	•	3	•	
	85	Acetal	Nylon	500	227	-50 to 200	-46 to 93	0.50	0.74	•	3	•	

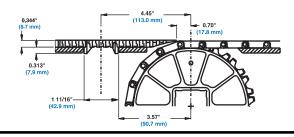
- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



	ONEPIEC	E™ Live T	ransfer Flat Top
	in.	mm	ITTO
Pitch	1.07	27.2	
Minimum Width	4.7	119	
Width Increments	0.33	8.4	W-170
Opening Size (approximate)	-	-	
Open Area	0	%	
Hinge Style	Clo	sed	4
Drive Method	Center	-driven	NO.
Produc	t Notos		


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Transfer edge is an integral part of this belt.
- For custom belt widths please contact Customer Service.
- Molded tracking tabs fit into standard 1-3/4 in. (44.5 mm) wearstrip tracks insuring proper belt alignment.
- Built with nylon rods for superior wear resistance.
- Also available in a 4.7 in. (119 mm) wide single tracking tab belt | 6.0 in. (152 mm) Double Tracking Tab belt and 6 in. (152 mm) wide double tracking tab belt.
- When product is moving from the transfer belt to a takeaway belt, the top of the transfer belt should be 0.06 in. (1.5 mm) above the top of the takeaway belt. When product is moving from the infeed belt onto the transfer edge, the top of the belts should be level.
- You may need to include a fixed frame support member beneath the **ONEPIECE™** Live Transfer belt prior to the actual transfer. This will insure that the ONEPIECE™ Live Transfer belt does not snag when it intersects with the takeaway belt. See "Fig. 3-31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECE™ LIVE TRANSFER BELT" (page 336)
- The Series 900 **ONEPIECE™** Live Transfer belt should not be used with sprockets smaller than a 3.5 in. (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in. (89 mm) pitch diameter is required, the split sprocket should not be used.

Additional Information


- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

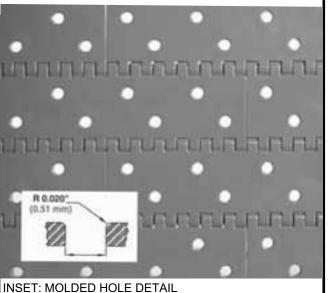
1.6875

4.7 in. (119 mm) Single Tracking Tab belt

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1=Wł	Agency nite, 2=Blue	•	•		rey	
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	Ac	J ^d	EU MC ^e	
Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54	•				3	•	
Acetal	Nylon	1480	2200	-50 to 200	-46 to 93	1.50	7.30	•				3	•	

- USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	P	erforated
	in.	mm
Pitch	1.07	27.2
Minimum Width	2	51
Width Increments	0.33	8.4
Opening Size (approximate)	See Prod	uct Notes
Open Area	See Prod	uct Notes
Hinge Style	Clo	sed
Drive Method	Center	-driven


Flat Top

Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- · Available hole sizes:
- Ø 1/8 in. (3.2 mm) 5% Open Area
- Ø 5/32 in. (4.0 mm) 6% Open Area
- Ø 3/16 in. (4.8 mm) 8% Open Area
- All hole sizes include 3% open area at the hinge.
- Designed for vacuum transfer applications, with a scalloped underside to reduce carryway blockage.
- All holes have a radiused top edge allowing quiet operation and good vacuum performance.
- Other hole dimensions and patterns can be created by drilling Series 900 Flat Top.
- For elevated temperatures use stainless steel split sprockets.
- HR Nylon belts use short rodlets to hold the main hinge rod in place and are made from the same material as the main rod.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

1.07"

(27.2 mm)

0.384"

1.07"

(27.2 mm)

0.213

(5.4 mm)

1.07"

(27.2 mm)

(

	Belt Data													
Belt Material	Standard Rod Material Ø 0.18 in.	BS	Belt Strength		ure Range nuous)	W	Belt Weight 1/8 in	W	Belt Weight 5/32 in	W	Belt Weight 3/16 in	Agency / 1=Whi 3=Natu	te, 2=B	lue,
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	lb/ft²	kg/m²	lb/ft²	kg/m²	FDA (USA)	EU MC ^a	Jb
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	_	_	0.93	4.54	-	_	•	•	3
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	_	_	0.98	4.79	-	_	•	•	3
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.48	7.23	1.46	7.11	1.43	6.98	•	•	3
EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	_	_	1.46	7.11	-	_			
FR-TPES	Polypropylene	750	1120	40 to 150	4 to 66	_	_	1.59	7.76	-	_			
FDA HR Nylon ^c	Nylon	1200	1790	-50 to 240	-46 to 116	_	_	1.40	6.80	_	_	•		
Acetal ^d	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.48	7.23	1.46	7.11	1.43	6.98	•	•	3

- a. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- b. Japan Ministry of Health, Labour, and Welfare
- c. This product may not be used for food contact articles that will come in contact with food containing alcohol
- d. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating. 1/8 in. (3.2 mm) and 3/16 in. (4.8 mm) hole sizes are available in Acetal only.

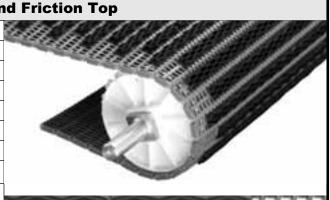
		Mesh	Top^{TM}
	in.	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.05 × 0.31	1.3 × 7.9	
Open Area	24	%	20
Hinge Style	Ор	en	
Drive Method	Center	-driven	
Product	Notes		TO STATE OF THE ST
belt width measurement ar designing a conveyor or of the Fully flush edges and recessed. Ideal for fruit and vegetable pastemmed products and dewards.	ordering a belt. sed rods. processing, esp	ecially for	Top surface Underside surface
Additional I	nformati	on	0.213" 1.07" 1.07" 1.07" 1.07"
 See "Belt selection process" See "Standard belt materials See "Special application belt 	s" (page 18)	ge 18)	(5.4 mm) (27.2 mm) (27.2 mm) (27.2 mm) (27.2 mm) (27.2 mm) (27.2 mm) (9.8 mm)

	Belt Data													
Belt Material	iviateriai	BS	Belt Strength	Temperati (contir	W	Belt Weight	1=W	_		y Acceptability: ue, 3=Natural, 4=Grey				
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Z ^d	Je	EU MC ^f
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.39	6.79	•					3	•
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.93	4.55	•					3	•
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.99	4.84	•					3	•

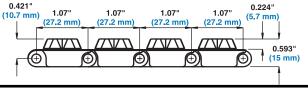
a. USDA Dairy acceptance requires the use of a clean-in-place-system.
b. Canada Food Inspection Agency
c. Australian Quarantine Inspection Service

See "Special application belt materials" (page 18)

• See "Friction factors" (page 31)


- c. Australian Quarantine Inspection Service
 d. New Zealand Ministry of Agriculture and Forestry
 e. Japan Ministry of Health, Labour, and Welfare
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

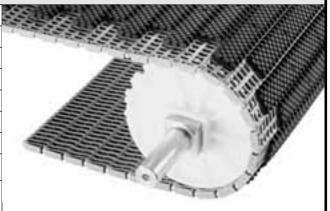


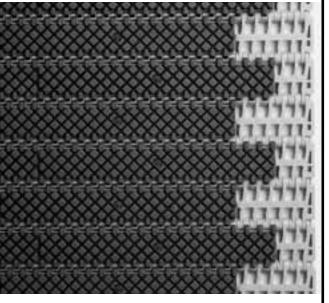

	Intralo	x [®] Diamon
	in.	mm
Pitch	1.07	27.2
Minimum Width (DFT)	2.3	58
Minimum Width (DFT Ultra)	3.0	76
Width Increments	0.33	8.4
Hinge Style	Op	en
Drive Method	Center	-driven
	4.55.4	

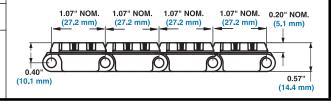
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Available in Diamond Friction Top (DFT) and Diamond Friction Top Ultra (DFT Ultra) (higher rubber concentration).
- White Friction Top materials comply with FDA regulations for use in food processing and packaging applications.
- Two material rubber modules provide a high friction surface without interfering with carryways and sprockets.
- Available in black rubber on grey polypropylene, white rubber on white polypropylene and white rubber on natural polyethylene.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.
- Intralox Diamond Friction Top has approximately 17% to 45% rubber, depending upon width. Intralox Diamond Friction Top Ultra has 52% to 100% rubber.
- Black rubber top modules have a hardness of 45 Shore A.
 White rubber top modules have a hardness of 56 Shore A.
- If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Abrasion Resistant rods are required.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline.
 Take these items into consideration when designing conveyor systems utilizing these belts.
- Minimum indent is 1 in. (25 mm)

- · See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data												
Belt Material	Standard Rod Material Ø 0.18 in.	BS	Belt Strength		Temperature Range (continuous)		Belt Weight	1=White, 2	Accepta =Blue, 3= 4=Grey	•			
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^a	EU MC ^b			
Polypropylene (DFT)	Polypropylene	1000	1490	34 to 150	1 to 66	1.10	5.40	1					
Polypropylene (DFT Ultra)	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.80	1					
Polyethylene (DFT)	Polyethylene	350	520	-50 to 120	-46 to 49	1.20	5.90	1					
Polyethylene (DFT Ultra)	Polyethylene	350	520	-50 to 120	-46 to 49	1.50	7.30	1					


- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.




	Sqı	uare Fri	ction Top
	in.	mm	
Pitch	1.07	27.2	
Minimum Width (SFT)	2.3	58	
Minimum Width (SFT Ultra)	3.0	76	
Width Increments	0.33	8.4	
Hinge Style	Op	en	
Drive Method	Center	-driven	4
	-		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Available in Square Friction Top (SFT) and Square Friction Top Ultra (SFT Ultra) (higher rubber concentration).
- Two material rubber modules provide a high friction surface without interfering with carryways and sprockets.
- Available in black rubber on grey polypropylene and white rubber on white polypropylene. Contact Customer Service for lead time for white rubber.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.
- Black rubber top modules have a hardness of 45 Shore
 A. White rubber top modules have a hardness of 56
 Shore A.
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Abrasion Resistant rods are required.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Minimum indent is 1 in. (25 mm)).

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material Ø 0.18 in.	BS	Belt Strength	Temperatur (continu	_	W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natur 4=Grey						
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	Ja	EU MCb				
Polypropylene (SFT)	Polypropylene	1000	1490	34 to 150	1 to 66	1.20	5.86	1						
Polypropylene (SFT Ultra)	Polypropylene	1000	1490	34 to 150	1 to 66	1.50	7.32	1						

a. Japan Ministry of Health, Labour, and Welfare


b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

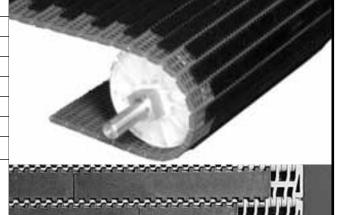
	Mold t	to Width	29 mm
		in.	mm
Pitch		1.07	27.2
Molded Width		1.1	29
Hinge Style		Clos	sed
Drive Method		Center-	-driven

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Available only in Square Friction Top Ultra (SFT Ultra) (higher rubber concentration).
- Two material rubber modules provide a high friction surface without interfering with carryways and sprockets.
- Available in black rubber on grey polypropylene and black rubber on grey or blue acetal.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.
- Black Rubber/PP modules have a hardness of 45 Shore
 A. Black Rubber/AC modules have a hardness of 54 Shore A.

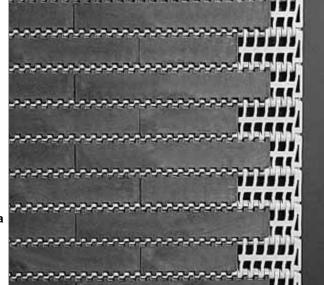
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

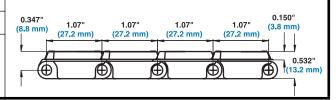
	Belt Data											
Belt Material	Standard Rod Material Ø 0.18 in.	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey				
	(4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	J ^a			
Polypropylene (SFT Ultra)	Nylon	65	29	34 to 150	1 to 66	0.17	0.25					
Acetal	Nylon	140	64	-10 to 130	-23 to 54	0.21	0.31					

a. Japan Ministry of Health, Labour, and Welfare



	Intra	alox [®] Flat
	in.	mm
Pitch	1.07	27.2
Minimum Width (FFT)	2.3	58
Minimum Width (FFT Ultra)	3.0	76
Width Increments	0.33	8.4
Hinge Style	Ор	en
Drive Method	Center	-driven


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Available in Flat Friction Top (FFT) and Flat Friction Top Ultra (FFT Ultra) (higher rubber concentration).
- White Friction Top materials comply with FDA regulations for use in food processing and packaging applications.
- Two material rubber modules provide a high friction surface without interfering with carryways and sprockets.
- Available in black rubber on grey polypropylene, white rubber on white polypropylene.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.
- Intralox Flat Friction Top has approximately 17% to 45% rubber, depending upon width. Intralox Flat Friction Top Ultra has 52% to 100% rubber.
- Black rubber top modules have a hardness of 45 Shore A.
 White rubber top modules have a hardness of 56 Shore A.
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Abrasion Resistant rods are required.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline.
 Take these items into consideration when designing conveyor systems utilizing these belts.
- Minimum indent is 1 in. (25.4 mm)
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline.
 Take these items into consideration when designing conveyor systems utilizing these belts.


Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Friction Top

	Belt Data											
Belt Material	Standard Rod Material Ø 0.18 in.	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1=White, 2	•	tability: 3=Natural,		
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^a	EU MC ^b		
Polypropylene (FFT)	Polypropylene	1000	1490	34 to 150	1 to 66	1.10	5.40	1				
Polypropylene (FFT Ultra)	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.80	1				

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Flush G	rid with	Insert Rollers
	in.	mm	
Pitch	1.07	27.2	
Minimum Width	6	152	100
Width Increments	1.00	25.4	
Opening Size (approx.)	0.24 × 0.28	6.1 × 7.1	
Width Increments	38	%	~ ~ 3
Hinge Style	Ор	en	
Drive Method	Center-	-driven	9
Produc	ct Notes		*******************
designing a conveyor or For applications where low is required. Standard roller spacings as 3 in. (76 mm), or 4 in. (102) Standard roller spacings as (27.2 mm), 2.14 in. (54.4 mm) r Minimum 1 in. (25.4 mm) r Contact Customer Service placement options. Sprockets must NOT be pled to be placed to be	back pressure accross belt width: 22 mm) inline or state long belt length: 6 nm). Foller indent. For non-standard laced inline with redications, place we applications, place	e in. (51 mm) aggered. 1.07 in. roller ollers. rearstrip ce wearstrip	
Additional	<u>-</u>	1.07" 1.07" (27.2 mm)	
• See "Belt selection proces			

	Belt Data													
Belt Material	Standard Rod Material	В	S		Belt S	trength		Temperatu (continu	W	Belt Weight	Acce	genc eptab	ility:	
	Ø 0.18 in. (4.6 mm)		Ro	ller Wid	Ith Spacin	g						1=Whi 3=Natu	,	,
	(4.0 11111)	2 in.	51 mm	3 in.	76 mm	4 in.	102 mm				O Nate	iiui, ¬	Cicy	
		lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA	Ja	EU
												(USA)		MCb
Polypropylene	Polypropylene	490	730	550	820	590	880	34 to 200	1 to 93	0.76	3.71	•	3	•
Acetal	Polypropylene	1030	1530	1170	1740	1240	1850	34 to 200	1 to 93	1.15	5.61	•	3	•

0.172" (4.4 mm)

Ø 0.75" (19.1 mm)

(8.7 mm)

• See "Standard belt materials" (page 18)

See "Friction factors" (page 31)

• See "Special application belt materials" (page 18)

a. Japan Ministry of Health, Labour, and Welfare
 b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Nub 1	Гор™
	in.	mm	
Pitch	1.07	27.2	
Minimum Width	10	254	
Width Increments	0.33	8.4	
Open Area	0		
Product Contact Area	7'		
Hinge Style	Clo	sed	
Drive Method	Center	-driven	3/2
Product	Notes		Innergrandensity and a second
width measurement and st designing a conveyor or of Fully flush edges and recess Improves productivity by rediction downtime. Ideal for batch-off application Alternating 2 in. (50.8 mm) & indents from edge of Flat Top	rdering a belt. led rods. lucing unschedens. la 4 in. (101.6 m		
Additional I	nformati	on	0.31"
 See "Belt selection process" See "Standard belt materials See "Special application belt 	"(page 18)	ge 18)	0.21" 1.07" NOM. 1.07" NOM. 1.07" NOM.

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength ^a				Belt Weight		Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey					Э у
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		USDA Dairy ^b		A ^d	Je	Z ^f	EU MC ^g
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.98	4.78	•				3		•

1.07" NO<u>M.</u> (27.2 mm)

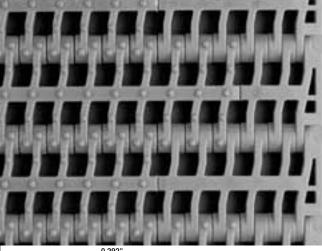
1.07" NOM. (27.2 mm)

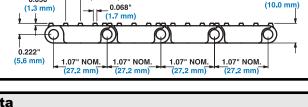
1.07" NO<u>M.</u> (27.2 mm)

- When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m). Contact Customer Service for availability of Polyurethane sprockets.
- USDA Dairy acceptance requires the use of a clean-in-place-system.

• See "Friction factors" (page 31)

- Canada Food Inspection Agency
 Australian Quarantine Inspection Service
 Japan Ministry of Health, Labour, and Welfare
 MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
 European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

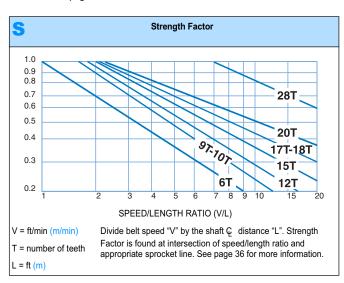


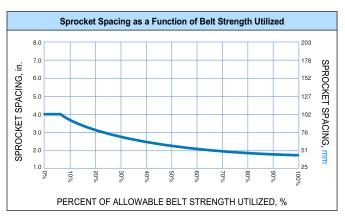

	Flus	sh Grid N				
	in.	mm				
Pitch	1.07	27.2				
Minimum Width	6	152				
Width Increments	0.33	8.4				
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1				
Open Area	38	%				
Product Contact Area	30	%				
Hinge Style	Open					
Drive Method	Center-driven					
D 1 4	N 4					

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Can only be used with Series 900 Flush Grid base flights.
- Fully flush edges and recessed rods.
- Belts are built with Flush Grid edge modules. Minimum Flush Grid indent is an alternating 1 in. (25.4 mm) and 2 in. (50.8 mm) pattern.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material Ø 0.18 in.	BS	Belt Strength ^a		Temperature Range (continuous)		Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey						у
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.80	3.91	•				3		•


- a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).
- b. USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.


133

Belt Wid	th Range ^a	Minimum Number of		Wearstrips
n.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	3	3	2
12	305	3	3	2
14	356	5	4	3
15	381	5	4	3
16	406	5	4	3
18	457	5	4	3
20	508	5	5	3
24	610	7	5	3
30	762	9	6	4
32	813	9	7	4
36	914	9	7	4
12	1067	11	8	5
18	1219	13	9	5
54	1372	15	10	6
30	1524	15	11	6
72	1829	19	13	7
34	2134	21	15	8
96	2438	25	17	9
20	3048	31	21	11
44	3658	37	25	13

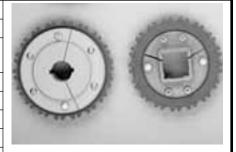
- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.33 in. (8.4 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.

							Spro	cket D	ataª		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	S	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	2
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm	
6 (13.40%)	2.1 ^c	53 ^c	2.2	56	0.75	19		1.0		25	
9	3.1	79	3.2	81	1.0	25	1	1.0	25	25	
(6.03%)								1.5		40	
10	3.5	89	3.6	91	0.75	19		1.0		40	
(4.89%)								1.5			
12 (3.41%)	4.1	104	4.3	109	1.5	38	1 to 1-1/2	1.5	25 to 40	40	3
							1-15/16 to 2-3/16		50 to 55		1 - Pitch diameter2 - Outer diameter3 - Hub width
17 (1.70%)	5.8	147	5.9	150	1.5	38	1-3/16 to 1-1/2		30 to 40		
18 (1.52%)	6.1	155	6.3	160	1.5	38	1 to 1-1/2	1.5	25 to 40	40	
							1-15/16	2.5	50 to	60	
							to 2-3/16		55	65	
20 (1.23%)	6.8	173	7.0	178	1.5	38	1 to 1-1/2	1.5	25 to 40	40	
							1-15/16	2.5	50 to	60	
							to 2-3/16		55	65	

- a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 650 lb/ft (967 kg/m) will be de-rated to 650 lb/ft (967 kg/m) when using 1.5" (40 mm) bore sprockets and belt rated over 1,100 lb/ft (1,637 kg/m) will be de-rated to 1,100 lb/ft (1,637 kg/m) when using 2.5" (60 mm) bore sprockets. All other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- B. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
- c. See the Retaining Rings section for more information on retaining the 2.1 in. (53 mm) pitch diameter sprocket.

	EZ Clean Sprocket Data ^a													
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Sizes					
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric Sizes					
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in. ^b	Square in.	Round mm ^b	Square mm				
12 (3.41%)	4.1	104	4.3	109	1.5	38		1.5		40				
18 (1.52%)	6.1	155	6.3	160	1.5	38		1.5		40				

- a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 650 lb/ft (967 kg/m) will be de-rated to 650 lb/ft (967 kg/m) when using 1.5" (40 mm) bore sprockets and belt rated over 1,100 lb/ft (1,637 kg/m) will be de-rated to 1,100 lb/ft (1,637 kg/m) when using 2.5" (60 mm) bore sprockets. All other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.



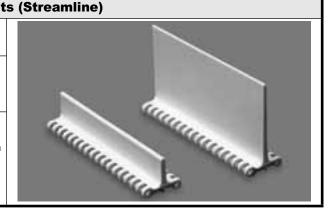
	Split Sprocket Data ^a													
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s				
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric Sizes					
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm				
10 (4.89%)	3.5	89	3.6	91	1.5	38		1.5		40				
12 (3.41%)	4.1	104	4.3	109	1.5	38		1.5		40				
15 (2.19%)	5.1	130	5.3	135	1.5	38	1-3/16 1-1/4	1.5						
17 (1.70%)	5.8	147	6.1	155	1.5	38			40	40				
18	6.1	155	6.3	160	1.5	38	1-1/4	1.5		40				
(1.52%)							1-1/2	2.5		60				
20	6.8	173	7.0	178	1.5	38	1-1/4	1.5		40				
(1.23%)								2.5		60				
28 ^c	9.8	249	10.0	254	1.5	38		1.5		40				
(0.63%)								2.5		60				

- a. Contact Customer Service for lead times.
- b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
- c. The 9.8 in. (249 mm) Pitch Diameter 28 tooth Split Sprocket should not be used with any Series 900 style Acetal belt. A special 9.7 in. (246 mm) Pitch Diameter Split Sprocket must be used instead. Contact Customer Service for lead times.

			Мо	lded (Glass	Filled	Nylon	Tooth	plate	Split S	procket Data ^a
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	,	Available E	Bore Size	s	
Teeth	Pitch Dia. in.	Pitch	Outer Dia.	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	3
(Chordal Action)	Dia. in.	Dia. mm	in.	Dia. mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm	6
15	5.1	130	5.3	135	1.5	38	1	1.5	30	40	100
(2.19%)							1-3/16	-	40		
17	5.8	147	6.1	155	1.5	38			30	40	25.50
(1.70%)									40		
18	6.1	155	6.3	160	1.5	38	1-1/4	1.5		40	
(1.52%)							1-1/2	2.5		60	
20	6.8	173	7.0	178	1.5	38	1-1/4	1.5		40	
(1.23%)								2.5		60	

- a. Contact Customer Service for lead times.
- b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

		Flat Top Base Flight			
Available F	light Height	Available Materials			
in.	mm	- Available Materials			
1	25				
2	51	Polypropylene, Polyethylene, Acetal			
3	76				

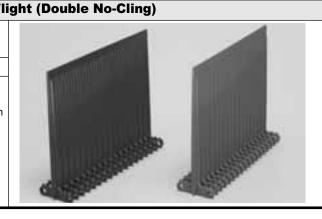

Note: Flights can be cut down to any height required for a particular

Note: Each flight rises out of the center of its supporting module, molded as an

integral part. No fasteners are required.

Note: Flat Top flight is smooth (Streamline) on both sides.

Note: The minimum indent (without sideguards) is 0.7 in. (17.8 mm).

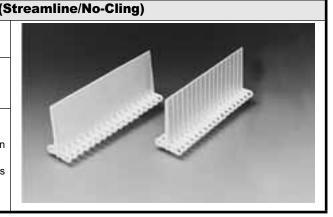

		Flush Grid Nub Top Base Fl
Available F	Flight Height	Available Materials
in.	mm	Available Waterials
4	102	Polypropylene, Acetal

Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: No-Cling vertical ribs are on both sides of the flight.

Note: The minimum indent (without sideguards) is 0.7 in. (17.8 mm).


Flush Grid Base Flights		
Available Materials	light Height	Available F
Available Waterials	mm	in.
Polypropylene, Polyethylene, Acetal, HR	25	1
Nylon (Non FDA), HR Nylon (FDA) ^a ,	51	2
Detectable Polypropylene ^b		

Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

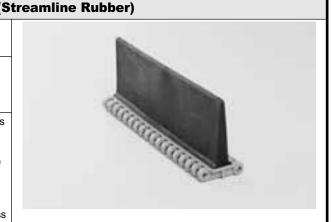
Note: One side of the Flush Grid flight is smooth (Streamline) while the other is ribbed vertically (No-Cling).

Note: The minimum indent (without sideguards) is 0.7 in. (17.8 mm).

- a. This product may not be used for food contact articles that will come in contact with food containing alcohol.
- b. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

		Flat Top Base Flights (
Available F	light Height	Available Materials
in.	mm	Available Materials
1	25	
2	51	Polypropylene
3	76	

Note: Each flight rises out of the center of its supporting module. No fasteners are required.


Note: 3 in. (76 mm) flights are available in Grey rubber only.

Note: Black or Grey rubber on top of Grey Polypropylene modules and White rubber on top of White Polypropylene modules (both FDA approved).

Note: Minimum indent (without sideguards) is 0.7 in (17.8 mm).

Note: Black rubber flights have a hardness of 45 Shore A and White rubber flights have a hardness of 56 Shore A and Grey rubber flights have a hardness of 85 Shore A.

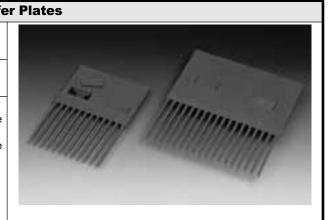
Note: Flights can be cut down to any height required for a particular application with a minimum flight height of 0.25 inch (13 mm).

		Sidegua			
Availabl	e Sizes	Available Materials			
in.	mm	Available iviaterials			
2	51	Polypropylene, Polyethylene, Acetal, HR Nylon (FDA) ^a , HR Nylon (Non FDA)			

Note: Sideguards have a standard overlapping design and are an integral part of the belt, with no fasteners required.

Note: The minimum indent is 1 in. (25.4 mm). The standard gap between the sideguards and the edge of a flight is 0.2 in. (5 mm).

Note: When going around the 6, 9, and 10 tooth sprockets, the sideguards will fan out, opening a gap at the top of the sideguard which might allow small products to fall out. The sideguards stay completely closed when wrapping around the 12 tooth and larger sprockets.


a. This product may not be used for food contact articles that will come in contact with food containing alcohol.

			Finger Transfe
Available	Available Widths		Available Materials
in.	mm	Fingers	Available Materials
6	152	18	Acetal
4	102	12	Acetai

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Finger Transfer Plates are installed easily on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

Note: 4 in. (102 mm) (12 finger) are for use only when retrofitting from Series 100 Raised Rib to Series 900 Raised Rib. The 4 in. (102 mm) wide cannot be mixed with the 6 in. (152 mm) wide finger plates.

		Hold Down
Available	Clearance	Available Materials
in.	mm	Avaliable Materials
0.16	4.1	Acetal
0.35	8.9	Acetal

Note: The 0.16 in. (4.1 mm) tab is available in both Flat Top and Flush Grid styles. The 0.35 in (8.9 mm) tab is available with a Flat Top style. The top of this tab sits 0.04 in. below the top of Flat Top belts and is level with the top of Flush Grid belts.

Note: Tabs are 1.4 in (36 mm) wide.

Note: Tabs are placed on every other row.

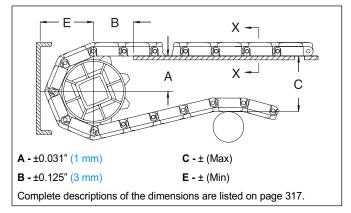
Note: Minimum indent is 0.7 in. (17.8 mm).

Note: A minimum of 2.7 in. (69 mm) is required between tabs to accommodate 1 sprocket.

Note: Carryway wearstrip or rollers that engage the tabs are only required at the transition between horizontal sections and angled sections. A carryway radius should be designed at this transition.

Note: Care should be taken to ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame.

Note: Hold Down Tabs will not work with the following sprockets 2.1 in. (53 mm) Pitch Diameter Molded, 3.1 in. (79 mm) Pitch Diameter Molded and 3.5 in. (89 mm) Pitch Diameter Split Metal.

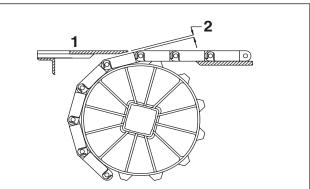

Tabs

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Spr	Sprocket Description		Α		В		С		E	
Pitch D	Diameter	No. Teeth	Range (Botto	m to Top)	i.e.		i.a		i.a.	
in.	mm	No. reem	in.	mm	in.	mm	in.	mm	in.	mm
	SERIES	900 FLUSH (GRID, FLAT TOP,	PERFORATI	ED FLAT	TOP, N	IESH TO	P, NUB	TOPa	
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.51	38
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.75	44
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.01	51
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.51	64
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.77	70
5.8	147	17	2.69-2.74	68-70	2.13	54	5.80	147	3.15	80
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	155	3.30	84
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	3.86	98
9.6	244	28	4.58	116	2.96	75	9.70	246	5.02	128
			SERIES 900	FLUSH GRID	NUB T	OP ^a				
2.1	53	6	0.75-0.90	19-23	1.22	31	2.19	56	1.35	34
3.1	79	9	1.30-1.39	33-35	1.52	39	3.17	81	1.85	47
3.5	89	10	1.47-1.56	37-40	1.64	42	3.51	89	2.02	51
4.1	104	12	1.82-1.90	46-48	1.75	44	4.19	106	2.35	60
5.1	130	15	2.34-2.40	59-61	1.95	50	5.19	132	2.86	73
5.8	147	17	2.69-2.74	68-70	2.09	53	5.87	149	3.20	81
6.1	155	18	2.86-2.91	73-74	2.12	54	6.21	158	3.37	86
6.8	173	20	3.21-3.25	82-83	2.25	57	6.89	175	3.70	94
9.6	244	28	4.58	116	2.92	74	9.61	244	5.06	129
	SE	RIES 900 RAI	SED RIB, FLUSH	GRID WITH	INSERT	ROLLEI	RS, OPE	N GRID	a	
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.73	44
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.97	50
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.23	57
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.73	69
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.99	76
5.8	147	17	2.69-2.74	68-70	2.13	54	6.00	152	3.40	86
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	157	3.52	89


Sprocket Description		A		В		С		E		
Pitch D	Diameter	N T (1	Range (Bottom to Top)							
in.	mm	No. Teeth	in.	mm	in.	mm	in.	mm	in.	mm
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	4.08	104
9.6	244	28	4.58	116	2.96	75	9.70	246	5.24	133
	SERIES	900 DIAMON	D FRICTION TOP	, FLAT FRIC	TION TO	P, SQU	ARE FR	ICTION	TOPa	
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.76	45
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.96	50
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.22	56
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.72	69
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.98	76
5.8	147	17	2.69-2.74	68-70	2.13	54	6.00	152	3.40	86
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	157	3.51	89
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	4.08	104
9.6	244	28	4.58	116	2.96	75	9.70	246	5.23	133
		SERIES S	900 MOLD TO WI	DTH 29 MM S	SQUARE	FRICTI	ON TOP	а		
2.1	53	6	0.75-0.90	19-23	1.27	32	2.38	60	1.54	39
3.1	79	9	1.30-1.39	33-35	1.58	40	3.36	85	2.04	52
3.5	89	10	1.47-1.56	37-40	1.70	43	3.70	94	2.21	56
4.1	104	12	1.82-1.90	46-48	1.88	48	4.38	111	2.54	65
5.1	130	15	2.34-2.40	59-61	2.10	53	5.38	137	3.05	77
5.8	147	17	2.69-2.74	68-70	2.32	59	6.06	154	3.39	86
6.1	155	18	2.83-2.88	72-73	2.31	59	6.34	161	3.52	89
6.8	173	20	3.21-3.25	82-83	2.42	61	7.08	180	3.89	99
9.6	244	28	4.58-4.61	116-117	2.92	74	9.80	249	5.25	133

a. Refer to "Anti-sag carryway wearstrip configuration" (page 322), for alternative layouts for the "B" dimension.

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

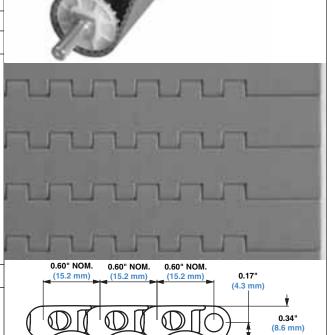
In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

SERIES 900

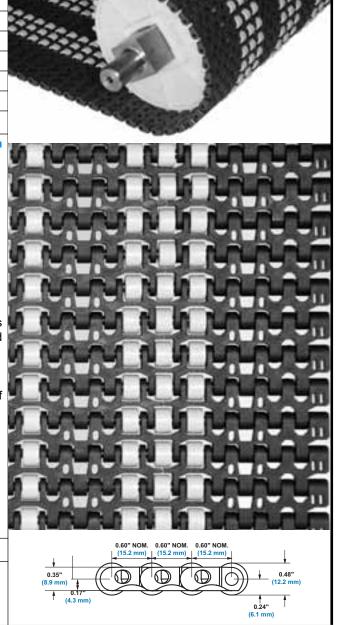

	Sprocket Description	Ga	p	
Pitch	Diameter	No Tooth	in.	mm
in.	mm	No. Teeth		11111
2.1	53	6	0.147	3.7
3.1	79	9	0.095	2.4
3.5	89	10	0.084	2.1
4.1	104	12	0.071	1.8
5.1	130	15	0.057	1.4
5.8	147	17	0.050	1.3
6.1	155	18	0.047	1.2
6.8	173	20	0.042	1.1
9.6	244	28	0.029	0.7

		Flat	Тор	
	in.	mm	424	
Pitch	0.60	15.2		
Minimum Width	3	76	1	
Width Increments	0.50	12.7		
Opening Sizes (approx.)	-	-		
Open Area	09	0%		
Hinge Style	Clos	Closed		
Drive Method	Center/Hin	Center/Hinge-Driven		
Duadina	4 Notes			

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth, closed upper surface with fully flush edges and recessed rods.
- Underside design and small pitch allows the belt to run smoothly around nosebars.
- Can be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.
- Mini-pitch reduces chordal action and transfer dead plate gap.
- Minimal back tension required.
- · Closed edges on one side of the belt.
- Lug tooth sprockets improve sprocket engagement and make installation easier.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See *"Friction factors"* (page 31)

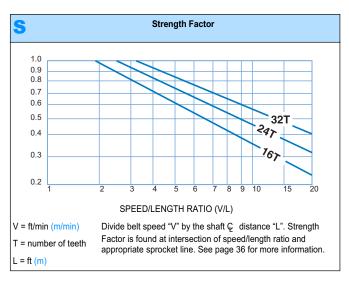
Belt Data														
Belt Material	Standard Rod Material	BS Belt Temperature Range W Belt Strength (continuous) Belt Weight						Agency Acceptability 1-White, 2-Blue, 3-Natural, 4-Grey						
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m °F °C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f		
Acetal	Polypropylene	1500	2232	34 to 200	1 to 93	1.55	7.57	•				3		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.07	5.22	•				3		
Polyethylene	Polyethylene	600	893	-50 to 150	-46 to 66	1.11	5.42	•				3		

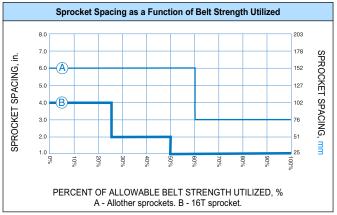

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

Insert F								
	in.	mm						
Pitch	0.60	15.2	1					
Minimum Width	6	152						
Width Increments	3.00	76						
Opening Sizes (approx.)	0.24 x 0.24	6.1 x 6.1						
Open Area 12.5%								
Hinge Style	Clos	sed	000					
Drive Method	Center/Hin	ge-Driven	8					
Produ	ct Notes							

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Yellow acetal rollers are 0.3 in. (7.6 mm) wide and 0.48 in. (12.1 mm) diameter and are located on the belt rod.
- Roller density is 240 rollers/ft² (2580 rollers/m²).
- Rollers protrude above and below the belt surfaces.
- Rollers are spaced in groups with 1.5 in. (38.1 mm) between roller zones.
- For low back pressure applications, place wearstrip between rollers. For driven applications, place wearstrip directly under rollers.
- Compatible with 0.75 in. (19.1 mm) diameter notched nosebars for tight transfers. Please contact customer service for detailed information.
- Belt can be supported using 1.38 in. (35.1 mm) wide or narrower parallel wearstrips.
- Sprocket locations are indented 1.5 in. (38.1 mm) from edge of belt.
- Sprocket locations are spaced 3.0 in. (76.2 mm) apart.
- Roller indent from edge of belt to edge of roller is 2.2 in. (55.9 mm).
- Minimal back tension required.
- Fully flush edges with recessed rods on one side and closed edges on opposite side.
- 6 in. (152 mm) belt is Mold-To-Width with 0.44 in. (11.2 mm) roller indent.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength	Temperatu (contin	ure Range luous)	W	Belt Weight	Agency Acceptability t 1-White, 2-Blue, 3-Natural, 4-Grey					еу	
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.7	8.3	•				3		


- a. USDA Dairy requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

Belt Widt	th Range ^a	Minimum Number of	Wearstrips							
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway						
3	76	2	2	2						
4	102	2	2	2						
6	152	2	2	2						
7	178	2	3	2						
8	203	2	3	2						
10	254	2	3	2						
12	305	3	3	2						
14	356	3	4	3						
15	381	3	4	3						
18	457	3	4	3						
24	610	5	5	3						
30	762	5	6	4						
36	914	7	7	4						
42	1067	7	8	5						
48	1219	9	9	5						
54	1372	9	10	6						
60	1524	11	11	6						
72	1829	13	13	7						
84	2134	15	15	8						
96	2438	17	17	9						
120	3048	21	21	11						
144	3658	25	25	13						


- a. Belts are available in 1.0 in. (25.4 mm) increments beginning with 3 in. (76 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only.

9
Ш
S

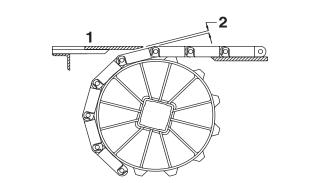
						Mo	olded S	prock	et Dat	:a ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes				
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm	
16	3.1 ^c	79 ^c	3.2	81	0.5	13		1.5		40	
(1.92%)					1.0	25	1.0				
24 (0.86%)	4.6	117	4.8	121	1.0	25		1.5		40 60	
32 (0.48%)	6.1	155	6.5	164	1.0	25		1.5		40	


- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
 c. When using 3.1 in. (79 mm) pitch diameter sprocket, the Belt Strength for belts rated over 1200 lb/ft (1786 kg/m) will be de-rated to 1200 lb/ft (1786 kg/m) and all other belts will maintain their published rating.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



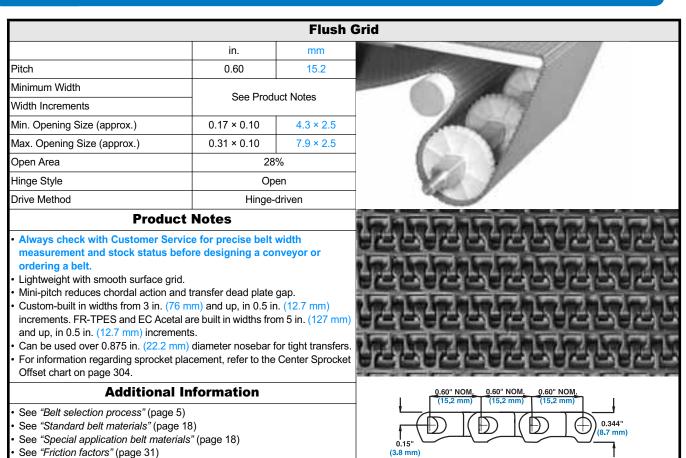
Spi	rocket Des	scription	Α	A		3		C	I	Ε
Pitch [Diameter	No. Teeth	Range (Botto	m to Top)	in.	mana	in.	mm	in.	mm
in.	mm	NO. Teetii	in.	mm] "".	mm	'''.	mm	111.	mm
FLAT TOP										
3.1	79	16	1.34-1.37	24-35	1.59	40	3.08	78	1.77	45
4.6	117	24	2.11-2.13	54	1.99	50	4.60	117	2.53	64
6.1	155	32	2.88-2.89	73	2.43	62	6.12	155	3.29	84
			INS	SERT ROLLE	R	•				
3.1	79	16	1.33	34	1.60	41	3.13	80	1.84	47
4.6	117	24	2.10	53	2.02	51	4.65	118	2.60	66
6.1	155	32	2.87	73	2.46	62	6.18	157	3.36	85

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate


2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Ga	р	
Pitch D	iameter	No. Teeth	in.	mm
in.	mm	NO. 166tii	111.	
3.1	79	16	0.029	0.7
4.6	117	24	0.020	0.5
6.1	155	32	0.015	0.4

Belt Data															
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight		Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Gr					irey	
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Z ^d	J ^e	EU MC ^f
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3,95	•	•	1	•	•	•	3	•
Polyethylene	Polyethylene	450	670	-50 to 150	-46 to 66	0.87	4.25	•	•	3	•		•	3	•
Acetal	Polypropylene	1300	1940	34 to 200	1 to 93	1.19	5.80	•	•	1	•			3	•
EC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.19	5.80								
FR-TPES	Polypropylene	750	1120	40 to 150	4 to 66	1.30	6.34								
Non FDA HR Nylon	Non FDA HR Nylon	1100	1640	-50 to 310	-46 to 154	1.20	5.80								
FDA HR Nylon ^g	Nylon	1100	1640	-50 to 240	-46 to 116	1.07	5.22	•							•
UV Resistant Polypropylene	UV Resistant Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.98								
Acetal ^h	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.19	5.80	•	•	1	•			3	•

- a. USDA Dairy acceptance require the use of a clean-in-place-system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- d. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- This product may not be used for food contact articles that will come in contact with food containing alcohol. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

		Flat '	Тор
	in.	mm	
Pitch	0.60	15.2	
Minimum Width	3	76	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	0'	%	
Hinge Style	Or	pen	Valle V
Drive Method	Hinge-	-driven	
Product	Notes		
 Always check with Custome width measurement and sto designing a conveyor or ord Lightweight with smooth, close Mini-pitch reduces chordal act 	ock status bet dering a belt. ed surface grid	fore d.	nnnnnnnn
 gap. Can be used over 0.875 in. (2 for tight transfers. For information regarding sprothe Center Sprocket Offset ch 	ocket placeme	ent, refer to	
Additional In	ıformati	0.60" NOM. 0.60" NOM. 0.60" NOM. (15.2 mm) (15.2 mm)	
See "Belt selection process" (page 5) See "Standard belt materials" (page 18)			0.157" (4.0 mm) (8.7 m

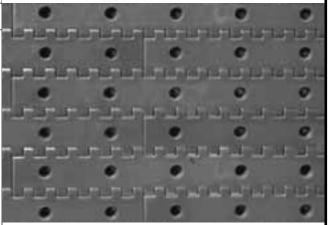
	Belt Data														
Belt Material	Material Strength (continuous)		W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey										
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Z ^d	Je	EU MC ^f
Polypropylene	Polypropylene	500 ^g	744 ^g	34 to 220	1 to 104	0.90	4.40	•	•	1	•	•	•	3	•
Polyethylene	Polyethylene	300 ^g	450 ^g	-50 to 150	-46 to 66	0.96	4.69	•	•	3	•	•	•	3	•
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.30	6.35	•	•	1	•			3	•
Acetal ^h	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35	•	•	1	•			3	•

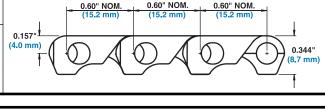
a. USDA Dairy acceptance requires the use of a clean-in-place-system.

• See "Special application belt materials" (page 18)

See "Friction factors" (page 31)

- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- e. Japan Ministry of Health, Labour, and Welfare
- f. European Migration Certificate providing approval for food contact according to EC Directive 2002/72/EC and all its amendments to date.
- g. When using steel split sprockets, the belt strength for polypropylene is 400 lb/ft (595 kg/m): polyethylene is 240 lb/ft (360 kg/m)
- h. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.


	Pei	rforated					
	in.	mm					
Pitch	0.60	15.2					
Minimum Width	3	76					
Width Increments	1.00	25.4					
Opening Size (approximate)	-	-					
Open Area	39	%					
Hinge Style	Ор	en					
Drive Method	Hinge-driven						
Product Notes							

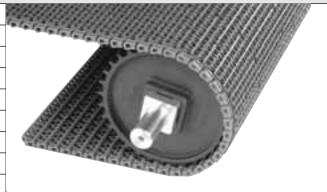

Flat Top

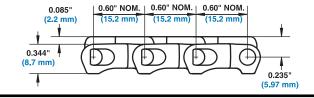
Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Available with 5/32 in. (4 mm) round perforations on a nominal 1 in. (25.4 mm) × 0.6 in. (15.2 mm) perforation pattern.
- For use on vacuum applications requiring tight, end-toend transfers.
- Underside design and small pitch allows the belt to run smoothly around nosebars.
- Can be used over 0.875 in. (22.2 mm) diameter nosebar for tight transfers.
- For information regarding sprocket placement, refer to the Center Sprocket Offset chart on page 304.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	Temperature Range (continuous) Belt Agency Accept Weight 1=White, 2=Blue, 3=Na						•			
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry	Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.30	6.35	•	•				3	•
Acetal ^f	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35	•	•				3	•


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- f. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

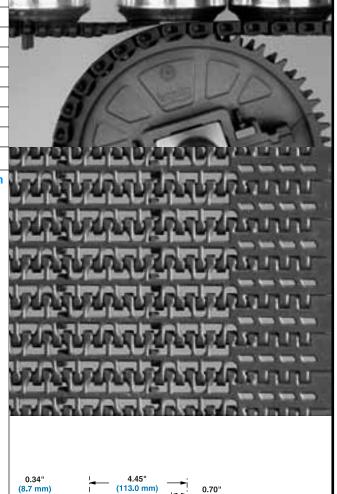

	Flusi	h Grid F	riction Top
	in.	mm	
Pitch	0.60	15.2	
Minimum Width	3	76	
Width Increments	0.5	12.7	
Opening Size (approximate)	0.17 × 0.10	4.3 × 2.5	
Open Area	28	%	
Hinge Style	Ор		
Drive Method	Hinge-		
D J 4	NI - 4		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Available with grey rubber on a grey polypropylene belt and white rubber on a white polypropylene belt.
- White and Black Friction Top materials comply with FDA regulations for use in food processing and packaging applications.
- Can be used over 0.875 in. (22.2 mm) diameter nosebar for tight transfers.
- For information regarding sprocket placement, refer to the Center Sprocket Offset chart on page 304.
- Available materials are Grey PP/Grey Rubber, Grey PP/ Black Rubber, and White PP/White Rubber.
- Belts have a 0.34 in. (8.6 mm) molded indent.
- Grey rubber has a hardness of 64 Shore A. White and Black rubber has a hardness of 55 Shore A.
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Abrasion Resistant rods are required.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	Temperature Range (continuous) Belt Agency Acceptal 1=White, 2=Blue, 3=Natural,							•			
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Polypropylene	700	1040	34 to 150	1 to 66	0.81	3.98	1, 5						

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



	ONEPIECI	E™ Live T	ransfer Flush Gri
	in.	mm	
Pitch	0.60	15.2	
Minimum Width	6	152	The same of the sa
Width Increments	1.00	25.4	THE PERSON NAMED IN
Min. Opening Size (approx.)	0.17 × 0.10	4.3 × 2.5	- 49
Max. Opening Size (approx.)	0.31 × 0.10	7.9 × 2.5	400
Open Area	28	%	8//
Hinge Style	Op	en	21/5
Drive Method	Hinge-	driven	
	+		TO THE REAL PROPERTY AND ADDRESS OF THE PARTY.

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- · Lightweight with smooth surface grid.
- Mini-pitch reduces chordal action, resulting in a smoother product transfer.
- Transfer edge is an integral part of this belt.
- Designed for smooth, self-clearing, right angle transfers onto takeaway belts.
- Molded tracking tabs fit into standard 1-3/4 in. (44.5 mm) wearstrip tracks insuring proper belt alignment.
- Built with nylon rods for superior wear resistance.
- Recommended for use with EZ Tracking sprockets.
- You may need to include a fixed frame support member beneath the **ONEPIECE**[™] **Live Transfer** belt prior to the actual transfer. This will insure that the **ONEPIECE**[™] **Live Transfer** belt does not snag when it intersects with the takeaway belt. See "Fig. 3–31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECE[™] LIVE TRANSFER BELT" (page 336).
- · Also available in 6 in. (152 mm) Mold to Width.
- Use sprockets with a Pitch Diameter of 3.5 in. (89 mm) or larger.
- For custom belt widths please contact Customer Service.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

(17.8 mm)

3.58

(90.9 mm)

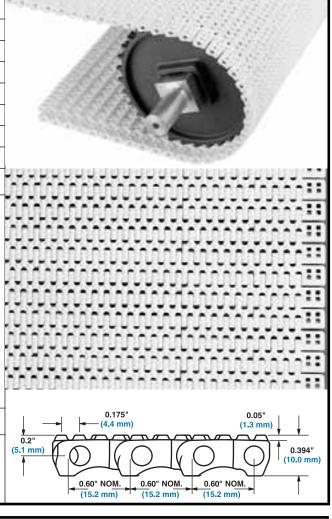
1-21/32

(42.1 mm)

Belt Data											
Belt Material Standard Rod Material Ø 0.18 in.		BS Belt Temperature F (continuous		•	W	Belt Weight	_	ncy Accep e, 2=Blue, 4=Grey	3=N	-	
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	Jb	EU MC ^c
Acetal	Nylon	1300	1940	34 to 200	1 to 93	1.19	5.80	•		3	•
FR-TPES	Nylon	750	1120	40 to 150	4 to 66	1.30	6.34				
Non FDA HR Nylon	Non FDA HR Nylon	1100	1640	-50 to 310	-46 to 154	1.20	5.80				

0.31

(7.9 mm)


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Japan Ministry of Health, Labour, and Welfare
- c. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

Flush Grid Nub Top™									
	in.	mm							
Pitch	0.60	15.2	2-3-3-5-5-						
Minimum Width	3	76							
Width Increments	1.00	25.4	A						
Opening Size (approx.)	0.18 × 0.09	4.4 × 2.3	-600						
Open Area	159	%	200						
Product Contact Area	269	26%							
Hinge Style	Оре	Open							
Drive Method	Hinge-d	Hinge-driven							
Duade	-4 N-4								

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Standard Nub indent is 1 inch (25.4 mm).
- Headless rod retention system allows re-use of rods.
- Nub pattern reduces contact between belt surface and product.
- Manufactured in Acetal, Polypropylene and Polyethylene (for frozen products).
- Recommended for products large enough to span the distance between the nubs.
- Can be fitted with a 2.0 inch (50.8 mm) Flush Grid Nub Top flight.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength ^a		ure Range nuous)	W	Belt Weight	1=	Age White, 2:	ency Acc =Blue, 3	•	•		rey
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.93	4.55	•				3		•
Acetal	Polypropylene	1300	1940	34 to 220	7 to 93	1.36	6.65	•				3		•
Polyethylene	Polyethylene	450	670	-50 to 150	-46 to 66	1.00	4.90	•				3		•
Acetal	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.36	6.65	•				3		•

- a. When using Polyurethane sprockets, the Belt Strength for Polypropylene, Acetal and Nylon is750 lbs/ft (1120 kg/m), and the temperature range for the sprocket is 0 °F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- b. USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Embe	dded Di	amond Top
	in.	mm	
Pitch	0.60	15.2	
Minimum Width	3	76	1000°
Width Increments	1.00	25.4	18 18 (35)
Opening Size (approx.)	-	-	
Open Area	0'	%	
Hinge Style	Op	en	A STORY
Drive Method	Hinge-	-driven	
Product	Notes		(回り回り回り回り回り回り回り回り回り回り回り回り回り回り回り回り回り回り回り
 designing a conveyor or or Lightweight with smooth, close Mini-pitch reduces chordal actigap. Can be used over 0.875 in. (2 for tight transfers. For information regarding spread the Center Sprocket Offset characters. 	sed surface gri tion and transfe 22.2 mm) diam ocket placement nart on page 3	d. er dead plate eter nosebar ent, refer to 04.	0.60" NOM. 0.60" NOM. 0.60" NOM.
Additional li	ntormati	on	0.60" NOM. 0.60" NOM. 0.60" NOM. (15.2 mm) (15.2 mm)
 See "Belt selection process" See "Standard belt materials" See "Special application belt See "Friction factors" (page 3 	"(page 18) <i>materials"</i> (pa	ge 18)	0.157" (4.0 mm)

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength ^a		Temperature Range (continuous)					ncy Acceptability: Blue, 3=Natural, 4=Gre			Grey		
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		USDA- FSIS - Meat & Poultry	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Polyethylene	Polyethylene	300	450	-50 to 150	-46 to 66	0.96	4.69	•	•	3			3		•

- a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).
 b. USDA Dairy acceptance requires the use of a clean-in-place-system.
 c. Canada Food Inspection Agency
 d. Australian Quarantine Inspection Service
 e. Japan Ministry of Health, Labour, and Welfare
 f. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
 g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Cone 1	「op™
	in.	mm	1 4 8 8 1
Pitch	0.60	15.2	Marin
Minimum Width	9	229	A STATE OF THE STA
Width Increments	1.00	25.4	
Opening Size (approx.)	-	-	
Open Area	0%	6	200000000000000000000000000000000000000
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	
Produc	Notes		mananananana
 designing a conveyor or of the content of	ction and transfe (22.2 mm) diame procket placeme chart on page 30	eter nosebar nt, refer to	
Additional I	nformatio	on	/—R 0.03 (0.7 mr
 See "Belt selection process" See "Standard belt materials See "Special application bel See "Friction factors" (page 	s" (page 18) t materials" (pag	ge 18)	0.125"

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight			Agency	•	•	oility: ural, 4=Grey		
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA- FSIS - Meat & Poultry		CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.31	6.40	•	•	1			3		•

a. USDA Dairy acceptance requires the use of a clean-in-place-system.
b. Canada Food Inspection Agency
c. Australian Quarantine Inspection Service

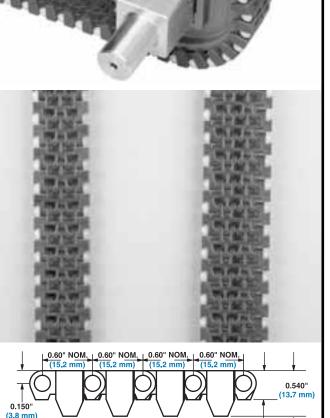
See "Friction factors" (page 31)

- Japan Ministry of Health, Labour, and Welfare
 MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

and 46 mm Wide

0.344"

(8.7 mm)

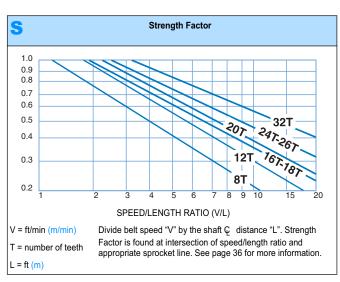


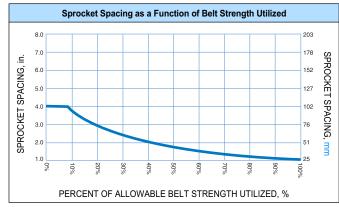
Flu	sh Grid I	MTW, 38
	in.	mm
Pitch	0.60	15.2
Molded Widths	1.5 & 1.8	38 & 46
Min. Opening Size (approx.)	0.17 × 0.10	4.3 × 2.5
Max. Opening Size (approx.)	0.31 × 0.10	7.9 × 2.5
Open Area	26	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Product	Notos	

Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Boxed in 10 ft. (3.05 m) increments.
- Flush edges with snap-in rod retention.
- Tracking tabs provide lateral tracking.
- · All chains come with nylon rodlets standard, providing longer service life.
- · Lightweight with smooth surface grid.
- · Can be used over 0.875 in. (22.2 mm) diameter nosebar for tight transfers.
- One (1) sprocket maximum per shaft for both widths.
- EZ Track sprockets only.
- The 38 mm belt has a 1.23 in. (31.2 mm) spacing between tabs. The 46 mm belt has a 1.54 in (39.1 mm) spacing.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


	Belt Data														
Belt Material	Material Strength ^a (continu						Belt Agency Acceptability: Weight 1=White, 2=Blue, 3=Natural, 4=Grey								
	Ø 0.18 in. (4.6 mm) lb		kg	°F	°C	lb/ft	kg/m	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g	
Acetal (38 mm)	Nylon	130	59	-50 to 200	-46 to 93	0.185	0.275	•				3		•	
Acetal (46 mm)	Nylon	150	68	-50 to 200	-46 to 93	0.216	0.321	•				3		•	


- When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).
- b. USDA Dairy acceptance require the use of a clean-in-place-system.
- Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Sprocket and Support Quantity Reference											
Belt Wid	Ith Range ^b	Minimum Number of	V	Vearstrips								
in.	mm	Sprockets Per Shaft ^c	Carryway	Returnway								
3	76	1	2	2								
4	102	1	2	2								
6	152	2	2	2								
7	178	2	3	2								
8	203	2	3	2								
10	254	3	3	2								
12	305	3	3	2								
14	356	5	4	3								
15	381	5	4	3								
16	406	5	4	3								
18	457	5	4	3								
20	508	5	5	3								
24	610	7	5	3								
30	762	9	6	4								
32	813	9	7	4								
36	914	9	7	4								
42	1067	11	8	5								
48	1219	13	9	5								
54	1372	15	10	6								
60	1524	15	11	6								
72	1829	19	13	7								
84	2134	21	15	8								
96	2438	25	17	9								
120	3048	31	21	11								
144	3658	37	25	13								
For Other M	Widths, Use Odlaximum 4 in. (1	Id Number of Sprockets ^d at 02 mm) Ç Spacing	Maximum 6 in. (152 mm) € Spacing	Maximum 12 in. (305 mm) Ç Spacing								

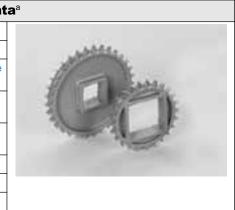
- a. Because of the single plate steel design, Intralox recommends using twice as many 8 and 12 tooth sprockets as indicated.
- b. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 3 in. (76 mm). If the actual width is critical, consult Customer Service.
- c. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- d. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.

						M	olded	Sprock	et Da	taa	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	l A	Available E	Bore Size	S	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm	
12 (3.41%)	2.3	58	2.3	58	0.75	19	1.0	1.0	25	25	1 +
16 (1.92%)	3.1	79	3.1	79	1.0	25	1 to 1-1/4	1.5	25 to 30	40	1 + +
18 (1.52%)	3.5	89	3.5	89	0.75	19		1.0		25 40	
20 (1.23%)	3.8	97	3.8	97	1.0	25		1.5		40	3
24 (0.86%)	4.6	117	4.7	119	1.0	25	1 to 1-1/4	1.5 2.5	25 to 30	40 60	1 - Pitch diameter 2 - Outer diameter
26 (0.73%)	5.1	130	5.1	130	1.0	25	1 to 1-1/4	1.5	25 to 30	40	3 - Hub width
32 (0.48%)	6.1	155	6.2	157	1.0	25	1 to 1-1/4	1.5 2.5	25 to 30	40 60	

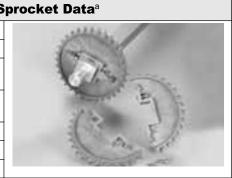
- a. Contact Customer Service for lead times.
- b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

	Stainless Steel Sprocket Data ^a													
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub		vailable E Sizes		s : Sizes				
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in. ^b	Square in.	Round mm ^b	Square mm				
8 (7.61%)	1.6	41	1.6	41	0.164	4.2	3/4	5/8	20					
12 (3.41%)	2.3	58	2.3	58	0.164	4.2	1.0	1.0	25	25				

- a. Contact Customer Service for lead times.
- b. The stainless steel sprockets have a male key in the round bore sizes. Since the key is part of the sprocket, only the center sprockets should be locked down to track the belt. The male key requires that the shaft keyway run the entire length of the shaft. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885


	Split Sprocket Data ^a												
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s			
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Sizes Metric				
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.b			Square mm			
18 (1.54%)	3.5	89	3.5	89	1.7	43		1.5		40			
24 (0.86%)	4.6	117	4.7	119	1.7	43	1 1-3/16 1-1/4	1.5	30	40			
26	5.1	130	5.1	130	1.7	43	1	1.5		40			
(0.73%)							1-3/16 1-1/4	2.5		60			
32	6.1	155	6.2	157	1.7	43	1	1.5		40			
(0.48%)							1-3/16 1-1/4 1-1/2	2.5		60			

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885



					EZ	. Trac	k™ Mo	lded S	prock	et Dat	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.			U.S. Sizes		Metric	c Sizes	
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	
16 (1.92%)	3.1	79	3.1	79	1.0	25		1.5		40	
18 (1.52%)	3.5	89	3.5	89	1.0	25		1.5		40	
24	4.6	117	4.7	119	1.0	25		1.5		40	
(0.86%)								2.5		60	
32	6.1	155	6.2	157	1.0	25		1.5		40	
(0.48%)								2.5		60	

a. Contact Customer Service for lead times.

			EZ '	Track	≀™ Мо	lded	Glass	Filled I	Nylon	Split S
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	vailable E	Bore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in.	Square in.	Round mm	Square mm
24 (0.86%)	4.6	117	4.7	119	1.5	38		1.5		40
32	6.1	155	6.2	157	1.5	38		1.5		40
(0.48%)								2.5		60

a. Contact Customer Service for lead times.

				ΕZ	Trac	k™/EZ	Clean	™ Мо	lded S	prock	et Data
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)	Dia. III.	mm	in.	mm	in.	mm	Round	Square	Round	Square	2.0
,							in.	in.	mm	mm	- 4
12 (3.41%)	2.3	58	2.3	58	1.0	25	1.0	1.0	25	25	3
16	3.1	79	3.1	79	1.0	25	1.0		25		- 2
(1.92%)							1-1/16, 1-1/8, 1-1/4		30		2
18 (1.52%)	3.5	89	3.5	89	1.0	25		1.0		25	
20 (1.23%)	3.8	97	3.8	97	1.0	25		1.5		40	
24	4.6	117	4.7	119	1.0	25	1.0		25		
(0.86%)							1-1/16, 1-1/8, 1-3/16, 1-1/4		30		
26	5.1	130	5.1	130	1.0	25	1.0	1.5	25	40	
(0.73%)							1-1/16, 1-1/8, 1-1/4		30		
32	6.1	155	6.2	157	1.0	25	1.0		25		1
(0.48%)							1-1/16, 1-1/8, 1-3/16, 1-1/4		30		

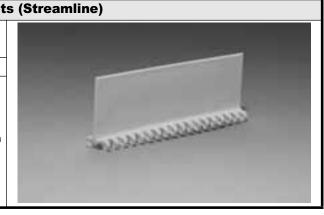
a. Contact Customer Service for lead times.

		Flat Top Base Flight
Available F	light Height	Available Materials
in.	mm	Available Waterials
2	51	Polypropylene, Polyethylene, Acetal

Note: Flights can be cut down to any height required for a particular

application.

Note: No fasteners required.


Note: Flat Top flight is smooth (Streamline) on both sides.

Note: The Flat Top base streamline flights are used in both Flat Top and Flush

Grid belts.

Note: The minimum recommended indent for Flat Top is 2 in. (51 mm). The

minimum recommended indent for Flush Grid is 1 in. (25 mm).



		Flush Grid Nub Top Base	Flights (No-Cling)
Available F	light Height	Available Materials	
in.	mm	Available iviaterials	
2	51	Polypropylene, Polyethylene, Acetal	
3	76	Polypropylene, Acetal	

Note: Flights can be cut down to any height required for a particular application.

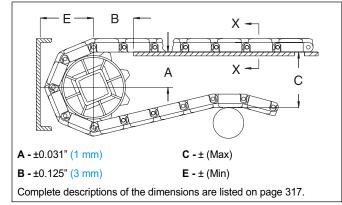
Note: Each flight rises out of the center of the module, molded as an integral part. No fasteners required.

Note: The No-Cling vertical ribs are on both sides of the flight. **Note:** The minimum recommended indent is 1 in. (25 mm).

	Sidegu								
Availab	le Sizes	Available Materials							
in.	mm	Available Materials							
2	51	Polypropylene, Polyethylene, Acetal							

Note: No fasteners required.

Note: The minimum indent is 1.3 in. (33 mm). The standard gap between the sideguards and the edge of a flight is 0.2 in. (5 mm).

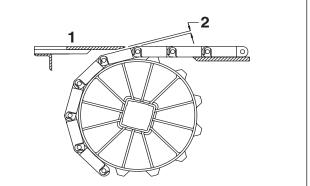

Note: When going around the 8, 12, 16 and 18 tooth sprockets, the sideguards will fan out, opening a gap at the top of the sideguard which might allow small products to fall out. The sideguards stay completely closed when wrapping around the 24 tooth and larger sprockets.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Sprocket Description		Α		E	3	()	I		
Pitch D	iameter	No. Teeth	Range (Bottor	n to Top)	in.	mm	in.	mm	in.	mm
in.	mm	No. reeur	in.	mm						
SE	RIES 110	0 FLUSH GR	ID, FLAT TOP, PE	RFORATED	FLAT T	OP ^a , EN	IBEDDE	D DIAM	OND TO	P
1.6	41	8	0.53-0.59	13-15	1.02	26	1.70	43	1.00	25
2.3	58	12	0.93-0.97	24-25	1.31	33	2.40	61	1.37	35
3.1	79	16	1.31	33	1.51	38	3.20	81	1.75	44
3.5	89	18	1.51	38	1.66	42	3.60	91	1.94	49
3.8	97	20	1.70	43	1.77	45	3.79	96	2.13	54
4.6	117	24	2.08	53	1.92	49	4.75	121	2.60	66
5.1	130	26	2.28	58	1.96	50	5.14	131	2.73	69
6.1	155	32	2.85	72	2.20	56	6.20	155	3.30	84
		•	SERIES 1100 FL	.USH GRID F	RICTION	N TOP ^a	•			
1.6	41	8	0.53-0.59	13-15	1.04	27	1.61	41	1.08	27
2.3	58	12	0.93-0.97	24-25	1.30	33	2.36	60	1.46	37
3.1	79	16	1.31	33	1.55	39	3.12	79	1.84	47
3.5	89	18	1.51	38	1.66	42	3.50	89	2.03	51
3.8	97	20	1.70	43	1.77	45	3.88	98	2.22	56
4.6	117	24	2.08	53	1.97	50	4.64	118	2.60	66
5.1	130	26	2.28	58	2.06	52	5.02	127	2.79	71
6.1	155	32	2.85	72	2.25	57	6.16	157	3.36	85
			SERIES 1100	FLUSH GRI	D NUB T	OPa				
1.6	41	8	0.53-0.59	13-15	1.04	27	1.57	40	1.05	27
2.3	58	12	0.93-0.97	24-25	1.30	33	2.32	59	1.42	36
3.1	79	16	1.31	33	1.55	39	3.08	78	1.80	46
3.5	89	18	1.51	38	1.66	42	3.46	88	1.99	51
3.8	97	20	1.70	43	1.70	43	3.84	98	2.18	55
4.6	117	24	2.08	53	1.97	50	4.60	117	2.56	65
5.1	130	26	2.28	58	2.06	52	4.98	127	2.75	70
6.1	155	32	2.85	72	2.25	57	6.13	156	3.32	84
			SERIES	3 1100 CONE	TOPa					
1.6	41	8	0.54-0.60	14-15	1.04	26	1.66	42	1.13	29
2.3	58	12	0.93-0.97	24-25	1.30	33	2.41	61	1.50	38
3.1	79	16	1.32	34	1.55	39	3.17	81	1.88	48
3.5	89	18	1.51	38	1.66	42	3.55	90	2.07	53
3.8	97	20	1.71	43	1.70	43	3.93	100	2.26	57
4.6	117	24	2.09	53	1.96	50	4.69	119	2.64	67
5.1	127	26	2.28	58	2.05	52	5.07	129	2.83	72
6.1	155	32	2.86	73	2.24	57	6.22	158	3.41	87


a. Refer to "Anti-sag carryway wearstrip configuration" (page 322) for alternative layouts for the "B" dimension.

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

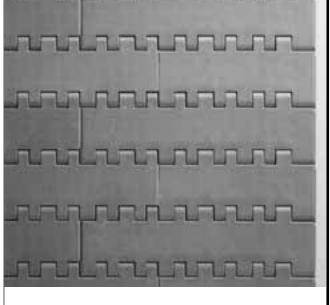
	Sprocket Descripti	on	Ga	р
Pitch D	iameter	No. Teeth	in.	mm
in.	mm	No. Teetii	III.	mm
1.6	41	8	0.058	1.5
2.3	58	12	0.040	1.0
3.1	79	16	0.029	0.7
3.5	89	18	0.026	0.7
3.8	97	20	0.024	0.6
4.6	117	24	0.020	0.5
5.1	130	26	0.018	0.4
6.1	155	32	0.015	0.4

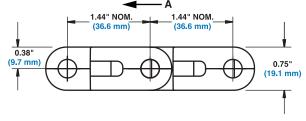
		Flush	Grid
	in.	mm	
Pitch	1.44	36.6	
Minimum Width	6	152	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	24	%	
Hinge Style	Clos	sed	
Drive Method	Center-	-driven	
Product	Notes		
width measurement and stort designing a conveyor or or easy retrofit from Series 400 or frame changes for most paster applications. Module thickness is 0.75 in. (superior belt strength and stiful elements of the limproved SLIDELOX® Rod elements of Molded split plastic sprockets installation. Made of engineered resin for minimal belt elongation through SLIDELOX® is glass reinforce.	dering a belt. without extensiceurize/warmer/ 19.1 mm) whice finess. Retention Systematical available for existention increased stiffugh thermal expect polypropyle	ive conveyor cooler ch provides em. easy ness and pansion.	A A 1.44" NOM. 1.44" NOM. (36.6 mm) (36.6 mm)
Additional li	nformation	on	(case man)
 See "Belt selection process" See "Standard belt materials" See "Special application belt See "Friction factors" (page 3 	"(page 18) <i>materials"</i> (pag	ge 18)	0.38" (9.7 mm) (19.1 mm)

				Belt l	Data								
Belt Material	Standard Rod Material	BS	Belt Strength ^a	•	ure Range nuous)	W	Belt Weight	1=Wh	Agency A	•	•	=Gre	∍ у
	Ø 0.31 in. (7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f
Polypropylene Composite	Polypropylene	3300	4908	-20 to 220	-29 to 104	2.87	14.01	•					

A -Preferred run direction

- a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m).
- USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.


		Flat 1
	in.	mm
Pitch	1.44	36.6
Minimum Width	6	152
Width Increments	1.00	25.4
Opening Size (approximate)	-	-
Open Area	00	%
Hinge Style	Clo	sed
Drive Method	Center	-driven
Droduct	Notos	


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Module thickness is 0.75 in. (19.1 mm) provides superior belt strength and stiffness. In the preferred running direction, the Series 1200 belts are rated at 4000 lb/ft (5950 kg/m).
- Improved SLIDELOX® Rod Retention System.
- Molded split plastic sprockets available for easy installation.
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion.
- Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in. (1524 mm), 3250 lb/ft (4835 kg/m) for belt widths under 30 in. (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in. (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in. (1524 mm).
- SLIDELOX® is glass reinforced polypropylene.

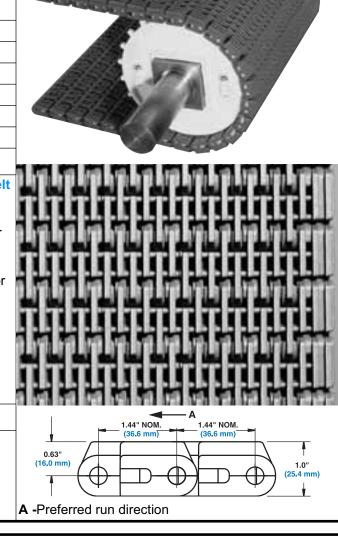
Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

A -Preferred run direction

				В	elt Data					
Belt Material	ivialeriai	BS	Belt Strength ^a	•	ure Range nuous)	W	Belt Weight		ncy Acceptability: Blue, 3=Natural, 4	=Grey
	Ø 0.31 in. (7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c
Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.17	15.45	•		

- a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in. (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in. (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in. (1524 mm)
- b. USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency



		Raised	Rib
	in.	mm	
Pitch	1.44	36.6	
Minimum Width	6	152	_
Width Increments	1.00	25.4	
Open Area	24	%	1990
Product Contact Area	24	-%	A 35 38
Hinge Style	Clo	sed	1775
Drive Method	Center	-driven	
Product	Notes		-
 Always check with Custom width measurement and stone designing a conveyor or or easy retrofit from Series 400 with frame changes for most past applications. Module thickness is 1.0 in. (2 belt strength and stiffness. Improved SLIDELOX® Rod For Molded split plastic sprockets 	ock status ber rdering a belt. without extensive eurize/warmer. 25.4 mm) providence Retention Systems	rore ve conveyor /cooler des superior em.	

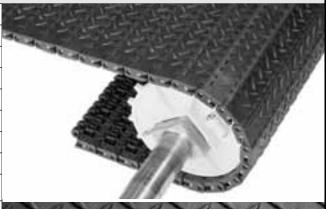
• SLIDELOX® is glass reinforced polypropylene. **Additional Information**

· Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion.

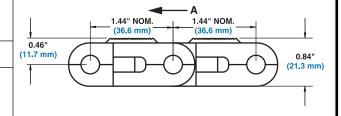
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data												
Belt Material	Standard Rod Material	BS	Belt Temperature Range (continuous)		W	Belt Weight		gency Ac , 2=Blue, 3			Grey	
	Ø 0.31 in. (7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Z ^e
Polypropylene Composite	Polypropylene	3300	4908	-20 to 220	-29 to 104	3.3	16.11	•				

- Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m).
- USDA Dairy acceptance requires the use of a clean-in-place-system. Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.



		Non Sk	kid
	in.	mm	
Pitch	1.44	36.6	30
Minimum Width	6	152	-
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	09	%	
Hinge Style	Clos	sed	
Drive Method	Center-	-driven	
Draduat	Notes		


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Module thickness is 0.75 in. (19.1 mm) provides superior belt strength and stiffness. In the preferred running direction, the Series 1200 belts are rated at 4000 lb/ft (5950 kg/m).
- Improved SLIDELOX® Rod Retention System.
- Molded split plastic sprockets available for easy installation.
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion; this static dissipative material does not rely on moisture to dissipate a charge, so it is effective in all environments.
- 1.44 in. (36.6 mm) pitch allows use of smaller drive sprockets than traditional "moving platform" belts, thus providing tighter transfers and requiring shallower floor trenches for installation.
- Non-Skid indent is 1 in. (25.4 mm).
- SLIDELOX® is glass reinforced polypropylene.

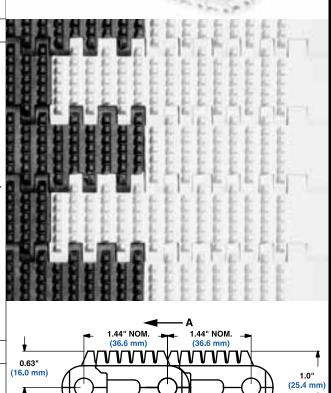
Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

A -Preferred run direction

	Belt Data											
Belt Material	Material		Belt Temperature Range Strength ^a (continuous)		W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=G			=Grey		
Ø 0.31 in. (7.9 mm)		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Z ^e
Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.21	15.65	•				

- a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in. (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in. (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in. (1524 mm).
- b. USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.



	N	lon Skid I	Raised Rib
	in.	mm	and the second
Pitch	1.44	36.6	70-10
Minimum Width	6	152	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	0	%	- 32
Product Contact Area	10	-20	
Hinge Style	Clo	sed	
Drive Method	Center		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion; this static dissipative material does not rely on moisture to dissipate a charge, so it is effective in all environments.
- 1.44 in. (36.6 mm) pitch allows use of smaller drive sprockets than traditional "moving platform" belts, thus providing tighter transfers and requiring shallower floor trenches for installation.
- Uses SLIDELOX® rod retention system.
- Tread pattern provides a non-skid walking surface to increase safety.
- Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.
- Rib indent is 1 in. (25 mm).
- SLIDELOX® is glass reinforced polypropylene.

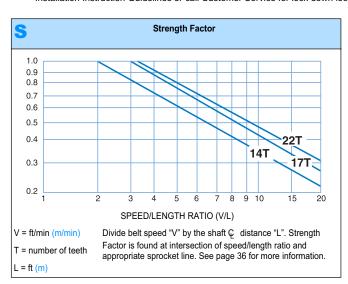
Additional Information

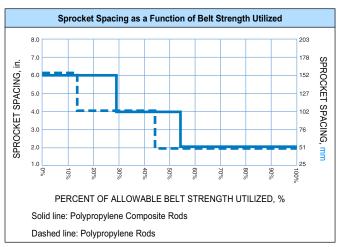
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data											
Belt Material	Standard Rod Material	Belt Strength ^a Temperature Range Weight Agency Adency Ad		' '				gency Acce , 2=Blue, 3=		l=Grey	
	Ø 0.31 in. (7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	EU MC ^d
Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.58	17.48	•			
UV Resistant Acetal ^e	Acetal	2500	3713	-50 to 150	-46 to 66	4.51	22.02				

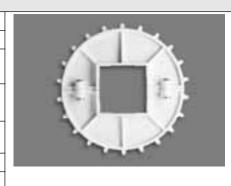
A -Preferred run direction

- a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in. (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in. (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in. (1524 mm)
- USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency
- d. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- e. UV Resistant Acetal requires special sprockets. Please contact Customer Service when ordering sprocket for this belt.




		Sprocket a	and Support Quantity Refere	nce
Belt Wid	dth Range ^a	Minimum Number of	W	/earstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
9	229	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
15	381	3	3	3
16	406	3	3	3
18	457	3	3	3
20	508	3	4	3
24	610	5	4	3
30	762	5	5	4
32	813	5	5	4
36	914	7	5	4
42	1067	7	6	5
48	1219	9	7	5
54	1372	9	7	6
60	1524	11	8	6
72	1829	13	9	7
84	2134	15	11	8
96	2438	17	12	9
120	3048	21	15	
144	3658	25	17	13
145	3683	25	18	14
146	3708	25	18	14
147	3734	25	18	 14
148	3759	25	18	14
149	3785	25	18	14
150	3810	25	18	14
151	3835	25	18	14
152	3861	25	18	14
153	3886	25	18	14
154	3912	25	19	14
155	3937	25	19	14
156	3962	27	19	14
157	3988	27	19	15
158	4013	27	19	15
159	4039	27	19	15
160	4064	27	19	15
161	4089	27	19	15
162	4115	27	19	15
163	4140	27	20	15
164	4166	27	20	15
165	4191	27	20	15
		dd Number of Sprockets ^c at	Maximum 6 in. (152 mm) Ç Spacing	Maximum 12 in. (305 mm) Ç Spacing
For Other	laximum 4 in. (1	02 mm) © Spacing	(152 mm) & Spacing	

Belt Wid	th Range ^a	Minimum Number of	1	Wearstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
166	4216	27	20	15
167	4242	27	20	15
168	4267	29	20	15
169	4293	29	20	16
170	4318	29	20	16
171	4343	29	20	16
172	4369	29	21	16
173	4394	29	21	16
174	4420	29	21	16
175	4445	29	21	16
176	4470	29	21	16
177	4496	29	21	16
178	4521	29	21	16
179	4547	29	21	16
180	4572	31	21	16
181	4597	31	22	17
182	4623	31	22	17
183	4648	31	22	17
184	4674	31	22	17
185	4699	31	22	17


- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 6 in. (152 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Locked Sprocket Location chart in the Installation Instruction Guidelines or call Customer Service for lock down location.

						Plas	tic Spli	it Spro	cket [Dataa
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	S
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round	Square	Round	Square
ŕ							in. ^b	in. ^c	mm ^b	mm
14	6.5	165	6.3	161	1.5	38		1.5		
(2.51%)								2.5		
17	7.9	201	7.7	196	1.5	38		2.5		
(1.70%)										
22	10.2	259	10.1	255	1.67	44		2.5		
(1.02%)					1.5	38	3.5	3.5		90

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
- c. The 2.5" square bore is created by using a bore adapter in the 3.5" square bore sprocket.

						Met	al Spli	t Spro	cket D	ataª
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	S
Teeth	Pitch	Pitch	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
(Chordal Action)	Dia. in.	Dia. mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
12 (3.41%)	5.6	142	5.4	137	1.7	43		2.5		
14 (2.51%)	6.5	165	6.3	161	1.7	43		2.5		
22	10.2	259	10.1	255	1.7	43		2.5		
(1.70%)								3.5		

a. Contact Customer Service for lead times.

Hold Down Tabs

Note: The strength rating for each Hold Down Tab is 100 lbs (45.4 kg) of force perpendicular to the hold down surface.

Note: Tabs should be spaced every other row (2.9 inches [73.2 mm]) along the length of the belt. Tabs can be spaced every fourth row (5.8 inches [146.3 mm]) for lightly loaded applications.

Note: Each line of tabs along the length of the belt reduces the available number of sprockets by 2. Belt rating is reduced by 1,300 lbs (590 kg) for each line of tabs.

Note: Carryway wearstrip or rollers that engage the tabs are only required at the transition between the horizontal sections and angled sections. This reduces initial system cost, as well as ongoing maintenance cost and effort.

Note: Care should be taken to ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame.

Note: A carryway radius should be designed at the transition between horizontal sections and angled sections. This radius must be at least 48 inches (1.22 m) for belts that will be loaded near the belt's strength rating. This radius is one of the most important factors to take into consideration when designing highly loaded conveyors that utilize Hold Down Tabs.

Note: Available on Non Skid and Flat Top belts.

Insert Nu								
Available	Base Belt Style	Available Inse	Available Insert Nut Sizes					
	eries 1200 Flat To propylene Comp	0,.0	5/16" - 18 (8 mm - 1.25 mm)					
Belt Material	Maximum Fi	xture Weight	Fastener Torque Specification					
	lbs/nut ^a	kg/nut ^a	inlbs	N-m				
Polypropylene Composite	355	155	100	11.3				

Note: Insert Nuts easily allow the attachment of fixtures to the belt.

Note: Nut placement constraints are as follows; 5/6" (21 mm) minimal indent from the edge of the belt for odd width belts and 1-5/6" (47 mm) minimal indent for even width belts, 1-1/3" (34 mm) minimal distance between nuts across the width of the belt and spacing along the length of the belt is in 1.44" (36.6 mm) increments.

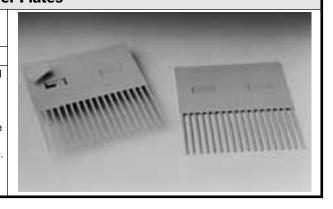
Note: All nut placement dimensions are referenced from the edge of the belt when placing an order. Contact Intralox Customer Service for nut location options available for your individual belt specifications.

Note: Attachments that are connected to more than one row must not prohibit the rotation of the belt around the sprockets.

Note: Sprockets cannot be located in-line with the locations of the insert nuts in the belt.

Note: For attachment bases that extend across multiple rows, considerations should be made to accommodate for reduced backbend.

a. This is fixture weight only. Product weight need not be included.



			Finger Transfe	r Plates
Available	e Widths	Number of	Available Materials	
in.	mm	Fingers	Available Materials	
6	152	18	Polypropylene	-

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots

Note: The Finger Transfer Plates for Series 400 are the same for Series 1200.

Two-Material Finger										
Available	e Widths	Number of	Available Materials							
in.	mm	Fingers	Available iviaterials							
6	152	18	Glass-Filled Thermoplastic Fingers, Acetal Backplate							

Note: Plates provide high strength fingers combined with a low friction back plate.

Note: Low-friction back plate is permanently attached to the two high-strength finger inserts.

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

Note: The Finger Transfer Plates for Series 400 are the same for Series 1200.

Note: Available in three different configurations:

Standard - long fingers with a short back plate.

Standard Extended Back - long fingers with an extended back plate Glass Handling -

- Short fingers with extended back plate
- Short fingers/short back (Contact Customer Service for lead times.)
- Mid-Length fingers/short back
- Mid-Length fingers/extended back

The long fingers provide good support for unstable products like PET containers and cans. The short fingers are sturdy enough for even the harshest broken glass applications. These fingers are designed to resist breaking, but if confronted with deeply embedded glass, the individual fingers will yield and break off, preventing costly belt or frame damage. The short back plate has two attachment slots and the extended back plate has three attachment slots. Mounting hardware for the two standard two-material FTP's includes plastic shoulder bolts and bolt covers. Mounting hardware for the Glass Handling two-material FTP's includes stainless steel oval washers and bolts which gives more secure fastening for the tough glass applications (Glass Handling hardware is sold separately). Plastic bolt covers are also included. The 10.2 in. (259 mm) PD, 22 tooth sprockets are recommended to be used with the Glass Handling finger transfer plates for best product transfer.

Note: Intralox also offers a single-material polypropylene standard finger transfer plate for better chemical resistance. Mounting hardware for this FTP includes plastic shoulder bolts and snap-cap bolt covers.

		Di	mensi	onal R	equir	emer	nts fo	r Fing	er Transfer Plate Installation
				Two-M	aterial				Two-material glass handling finger transfer plate shown
	Standard Long Fingers - Short Back		Standard Long Fingers - Extended Back		Glass Handling Short Fingers - Extended Back		Glass Handling Mid- Length Fingers - Extended Back		2.25" (57 mm)
	in.	mm	in.	mm	in.	mm	in.	mm	1.5"
F	3.50	89	3.50	89	3.50	89	3.50	89	1.5" (38 mm)
G	0.31	8	0.31	8	0.31	8	0.31	8	
Н	7.25	184	10.75	273	8.26	210	9.04	230	
I	5.91	150	5.91	150	5.91	150	5.91	150	
J	3.00	76	3.00	76	3.00	76	3.00	76	
K	1.45	37	1.45	37	1.45	37	1.45	37	
L	2.00	51	5.50	140	5.50	140	5.50	140	$K \leftarrow L - F = F = F^2$
Spacing at			Poly	propylen	e Comp	osite			0.5" (13 mm) +
ambient temperature	6.0	152.4	6.0	152.4	6.0	152.4	6.0	152.4	1 - SPACING 2 - 0.5" (13 mm) RADIUS (LEADING EDGE OF FRAME MEMBER) 3 - FRAME MEMBER

Self-Clearing Finger Transfer Plates										
Availab	le Width	Number of	Available Materials							
in.	mm	Fingers	Available iviaterials	1						
6	152	18	Polyurethane	-						

Note: The Self-Clearing Finger Transfer System consists of a finger transfer plate and a transfer edge belt that are designed to work together. This system eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types. The Self-Clearing Finger Transfer System is ideal for warmer/cooler applications with frequent product changeovers and is compatible with any series and style of Intralox belt on the discharge and infeed conveyors. This system is bi-directional allowing the same transfer belt to be used for both left-hand and right-hand transfers.

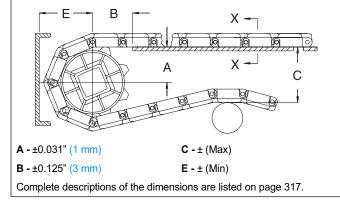
Note: Self-Clearing Finger Transfer System is capable of transferring product to and from Intralox Series 400, Series 1200 and Series 1900 Raised Rib belts.

Note: Smooth, flat top surface provides excellent lateral movement of containers.

Note: Robust design for durability in tough glass applications.

Note: Finger Transfer Plates are easily installed and secured to mounting plates of any thickness with supplied stainless steel bolts and oval washers that allow movement with the belt's expansion and contraction.

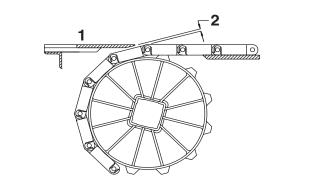
Note: Self-Clearing Transfer Edge Belt is molded with robust tracking tabs for belt support in heavy side-loading conditions. It has fully flush edges, headed rod retention system and nylon rods for superior wear resistance.


Dimen	sional R	equiren	nents for Self-Clearing Finger Transfer Plate Installations
	Self-C	learing	1.75" (45 mm)
	in.	mm	(45 mm) 1.46" (37 mm)
F	5.25	133	
G	5.15	29	
Н	8.05	204	K THE TOTAL PROPERTY OF THE PARTY OF THE PAR
I	5.95	151	0.59" (15 mm)
J	2.92	74	G
К	1.51	38	
L	2.71	69	2
Spacing at ambi			
PP Composite	6.000 in.	152.4 mm	1 - Spacing
			2 - Frame Member

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Sp	rocket Des	scription	А		I	3	(;		Ē
Pitch E	Diameter	No. Teeth	Range (Bottor	n to Top)	in.	no no	in.	mana	in.	100.100
in.	mm	NO. Teetii	in.	mm	111.	mm	'''.	mm	····	mm
SERIES 1200 FLUSH GRID, FLAT TOP										
5.6	142	12	2.31-2.41	59-61	2.15	55	5.56	141	3.22	82
6.5	165	14	2.78-2.87	71-73	2.35	60	6.48	165	3.87	98
7.9	201	17	3.48-3.55	88-90	2.62	67	7.85	199	4.55	116
10.2	259	22	4.64-4.69	118-119	3.02	77	10.13	257	5.69	145
	SERIES 1200 RAISED RIB, NON-SKID RAISED RIB									
5.6	142	12	2.31-2.41	59-61	2.15	55	5.81	148	3.47	88
6.5	165	14	2.78-2.87	71-73	2.35	60	6.73	171	4.12	105
7.9	201	17	3.48-3.55	88-90	2.62	67	8.10	206	4.80	122
10.2	259	22	4.64-4.69	118-119	3.02	77	10.38	264	5.94	151
			SERIE	S 1200 NON	SKID				•	
5.6	142	12	2.31-2.41	59-61	2.15	55	5.65	144	3.30	84
6.5	165	14	2.78-2.86	71-73	2.34	59	6.56	167	3.76	96
7.9	201	17	3.51-3.58	89-91	2.57	65	7.99	203	4.47	114
10.2	259	22	4.67-4.73	119-120	3.02	77	10.29	261	5.62	143

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

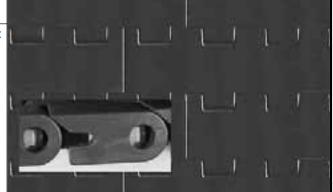
1 - Top surface of dead plate

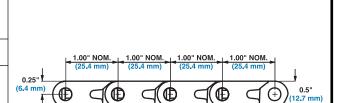
2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

SERIES 1200

	Sprocket Description	Gap			
Pitch Diameter		No. Teeth	in	mm	
in.	mm	- No. Teetii	in.	mm	
5.6	142	12	.095	2.4	
6.5	165	14	.081	2.1	
7.9	201	17	.067	1.7	
10.2	259	22	.052	1.3	




		Flat 1	Ор
	in.	mm	100
Pitch	1.00	25.4	
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	0%	%	
Hinge Style	Clos		
Drive Method	Center/hin	ge-driven	
B 1 4	N 4		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth, closed surface with fully flush edges.
- Robust design offers excellent belt and sprocket durability, especially in tough glass applications.
- Smooth, flat top provides excellent lateral movement of containers. Ideal for container handling.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- The Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life.
- Utilizes SLIDELOX® rod retention system. SLIDELOX® is available in polypropylene or acetal.

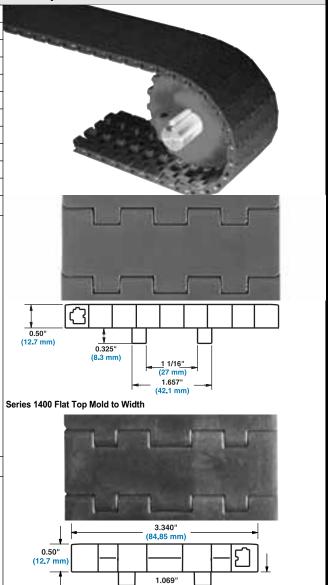
Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Inset: SLIDELOX® Edge

	Belt Data												
Belt Material	Standard Rod Material	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	1=V	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey				
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	2.75	13.43	•				3	•
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	1.85	9.03	•				3	•
Non FDA HR Nylon	Nylon	2000	2976	-50 to 310	-46 to 154	2.23	10.89						
EC Acetal	Nylon	1600	2380	-50 to 200	-46 to 93	2.69	13.13						

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



Proc	luct Notes		
Drive Method	Center/hi	nge-driven	
Hinge Style	Clo	sed	
Open Area	0		
Opening Size (approximate)	-	-	
	-	85.0	
	7.5	191	
	6.0	152	
	4.5	114	
Molded Widths	3.25	83	
Pitch	1.00	25.4	
	in.	mm	
		Mold to Width I	Flat Top

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- · Tracking tabs provide lateral tracking.
- · Smooth, closed surface with fully flush edges.
- Robust design offers excellent belt and sprocket durability, especially in tough, glass applications.
- Smooth, flat top provides excellent lateral movement of containers. Ideal for container handling.
- Optional tracking tabs fit into single barreled belt wearstrip with 1.75 in. (44.5 mm) spacing.
- One sprocket can be placed on the 3.25 in. (83 mm) mold to width belt and the 4.5 in. (114 mm) tabbed mold to width belt. One or two sprockets can be placed on the 4.5 in. (114 mm) no tab mold to width belt. Up to three sprockets can be placed on the 6.0 in. (152 mm) and the 7.5 in. (191 mm) mold to width belt.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- The Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life.
- Width tolerances for the Series 1400 Mold To Width belts are +0.000/-0.020 in. (+0.000/-0.500 mm).
- Series 1400 Mold To Width belts are boxed in 10 ft. (3.05 m) increments.
- Utilizes SLIDELOX® rod retention system. SLIDELOX® is available in polypropylene or acetal.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

(27.2 mm)

1.657" (42.1 mm)

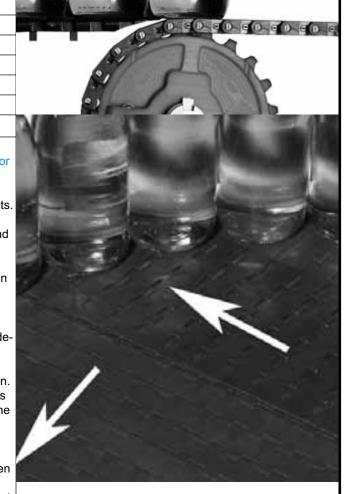
Series 1400 Flat Top 85 mm Mold to Width

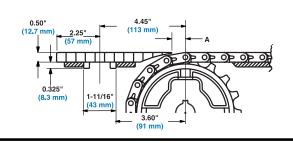
0.245"

(6.2 mm)

	Belt Data													
Belt Width Belt Material		Standard Rod Material	BS			Temperature Range (continuous)		Belt Weight			Agency Acceptability: 1=White, 2=Blue,			
			Ø 0.24 in. (6.1 mm)	Belt Str	ength ^a			Tab		No	Tab	3=Natural, 4=Grey		
inch	mm		, ,	lb	kg	°F	°C	lb/ft	kg/m	lb/ft	kg/m	FDA (USA)	Jb	EU MCc
3.25	83	Acetal	Nylon	700	318	-50 to 200	-46 to 93	0.80	1.19	0.75	1.12	•	3	•
4.5	114	Acetal	Nylon	850	386	-50 to 200	-46 to 93	1.13	1.68	1.07	1.59	•	3	•
6.0	152	Acetal	Nylon	1200	544	-50 to 200	-46 to 93	1.40	2.08	1.35	2.01	•	3	•
6.0	152	Polypropylene	Nylon	850	386	34 to 220	1 to 104	0.95	1.14	0.90	1.34	•	3	•
7.5	191	Acetal	Nylon	1550	703	-50 to 200	-46 to 93	1.75	2.60	1.71	2.54	•	3	•
	85	Acetal	Nylon	700	318	-50 to 200	-46 to 93	0.80	1.19	-	-	•	3	•

- a. Rating are based on non-tabbed belts using the maximum number of sprockets.
- b. Japan Ministry of Health, Labour, and Welfare
- c. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.


ansfer Flat Top

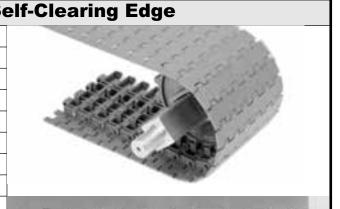


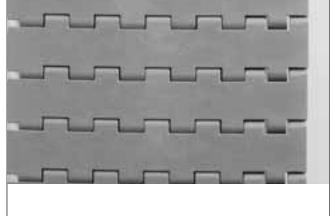
	ONEPIECE™ Live Tr										
	in.	mm									
Pitch	1.00	25.4									
Molded Width	6	152									
Width Increments	-	-									
Open Area	0	%									
Hinge Style	Clo	Closed									
Drive Method	Center/hir	Center/hinge-driven									
Product Notes											

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Transfer edge is an integral part of this belt, designed for smooth, self-clearing, right angle transfers onto takeaway belts.
- Smooth, flat top surface with fully flush edges provides excellent lateral movement of containers, especially PET and
- Built with nylon rods for superior wear resistance. Utilizes SLIDELOX® rod retention system. SLIDELOX® is available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, glass applications.
- Molded with robust tracking tabs to support belt in heavy, sideloading applications.
- When product is moving from the transfer belt to a takeaway belt, the top of the transfer belt should be no more than 0.06 in. (1.5 mm) above the top of the takeaway belt. When product is moving from the infeed belt onto the transfer belt, the top of the belts should be level.
- You may need to include a fixed frame support member beneath the **ONEPIECE™** Live Transfer belt prior to the actual transfer. This will insure that the belt does not snag when it intersects with the takeaway belt. See "Fig. 3-31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECE™ LIVE TRANSFER BELT" (page 336)
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- The Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life.
- Series 1400 Live Transfer belts are boxed in 10 ft. (3.05 m) increments.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)
- See "90° CONTAINER TRANSFERS" (page 335)

Belt Data										
Belt Material	Standard Rod Material Ø 0.24 in. (6.1 mm)	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey		•
		lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	J ^a	EU MCb
Acetal	Nylon	850	386	-50 to 200	-46 to 93	1.25	1.86	•	3	•


- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

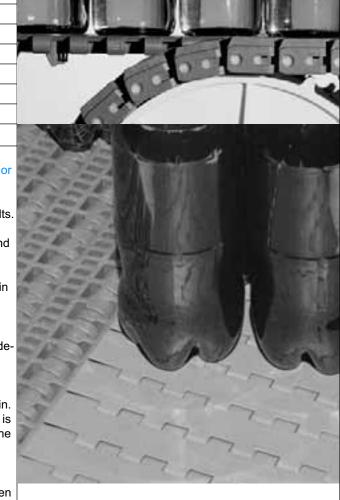


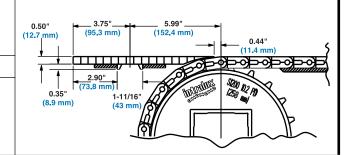
6	" Flat Top	MTW S
	in.	mm
Pitch	1.00	25.4
Minimum Width	6	152
Width Increments	-	-
Opening Sizes (approx.)	-	-
Open Area	0	%
Hinge Style	Clo	sed
Drive Method	Center/Hi	nge-Driven

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with headed rod retention.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. All Series 1400 sprockets are plastic.
- 100% self-clearing transfers of all container types, including energy drink cans, when used in conjunction with finger transfer plate.
- Belt is bidirectional, It can perform left- and right-hand transfers.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data													
Belt Material	Standard Rod Material Ø 0.24 in. (6.1 mm)	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	Agency Acceptability 1 = White, 2 = Blue, 3 = Natural, 4 = Grey					
		lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e
Acetal	Nylon	1000	454	-50 to 200	-46 to 93	1.08	1.61						


- a. USDA Dairy acceptance requires the use of a clean-in-place system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



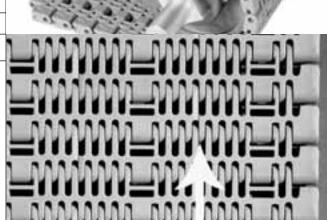
	ONEPIECE™ 9.3	in. (236 mr	m) Live Transfer Flat Top
	in.	mm	
Pitch	1.00	25.4	190 190
Molded Width	9.3	236	
Width Increments	-	-	
Open Area	0'	%	
Hinge Style	Clo	sed	1000
Drive Method	Center/Hir	nge-driven	200
Pro	duct Notes		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Transfer edge is an integral part of this belt, designed for smooth, self-clearing, right angle transfers onto takeaway belts.
- Smooth, flat top surface with fully flush edges provides excellent lateral movement of containers, especially PET and glass.
- Built with nylon rods for superior wear resistance. Utilizes SLIDELOX® rod retention system. SLIDELOX® is available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, glass applications.
- Molded with robust tracking tabs to support belt in heavy, sideloading applications. Tab height is 0.35 in. (8.9 mm). Tab spacing is 1 11/16 in. (43 mm).
- When product is moving from the transfer belt to a takeaway belt, the top of the transfer belt should be no more than 0.06 in.
 (1.5 mm) above the top of the takeaway belt. When product is moving from the infeed belt onto the transfer belt, the top of the belts should be level.
- You may need to include a fixed frame support member beneath the **ONEPIECE**[™] Live Transfer belt prior to the actual transfer. This will insure that the belt does not snag when it intersects with the takeaway belt. See "Fig. 3–31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECE™ LIVE TRANSFER BELT" (page 336).
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- The Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life.
- Series 1400 Live Transfer belts are boxed in 10 ft. (3.05 m) increments.

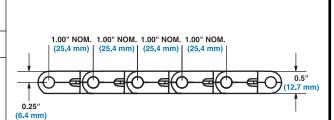
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)
- See "90" CONTAINER TRANSFERS" (page 335)

	Belt Data													
Belt Material	Standard Rod Material Ø 0.24 in. (6.1 mm)	BS	Belt Strength	Temperati (contir	W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey							
		lb	kg	°F	°F °C		kg/m	FDA (USA)	J ^a	EU MC ^b				
Acetal	Nylon	1550	703	-50 to 200	-46 to 93	1.86	2.77	•	3	•				

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Flush	Gric
	in.	mm	11
Pitch	1.0	25.4	
Minimum Width	9	229	
Width Increments	1.0	25.4	
Opening Size (approx.)	0.17 × 0.30	4.2 × 7.6	
Open Area	21	%	
Hinge Style	Clos	sed	40
Drive Method	Center/Hir	nge-driven	. 10
Produ	ıct Notes		
 Always check with Cus width measurement an designing a conveyor 	d stock status bef	-	


- Headless rod retention system allows re-use of rods.
- Utilizes SLIDELOX® rod retention system. SLIDELOX® is available in polypropylene or acetal.
- Polypropylene belts are grey with blue PP SLIDELOX®.
 Acetal belts are grey with yellow AC SLIDELOX®.
- Installation is the same as current Series 1400 belts with the addition of a locked sprocket location chart and preferred run direction.
- Minimum sprocket spacing is 3 inches (76.2 mm) and is recommended for an adjusted belt pull greater than 900 lb/ft (1339 kg/m). Maximum recommended sprocket spacing is 6 inches (152.4 mm).
- Fully flush edges with SLIDELOX® closures.

Additional Information

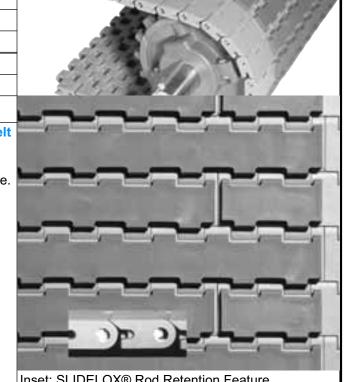
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

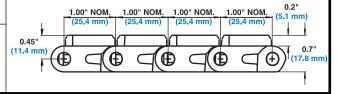
1. 1. 1. 1. 1.

Arrow indicates run direction

	Belt Data													
Belt Material	Material Strength ^a (continuous)				•					•				
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Polypropylene	Polypropylene	1800	2679	34 to 220	1 to 104	1.61	7.86	•				3		•
Polypropylene	Nylon	1800	2679	34 to 220	1 to 104	1.66	8.10	•				3		•
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	2.52	12.30	•				3		•

- a. Belt strength is divided by 2 when using 6 inch sprocket spacing; full strength when using 3 inch sprocket spacing.
- b. USDA Dairy acceptance requires the use of a clean-in-place system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- f. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.


Friction Top

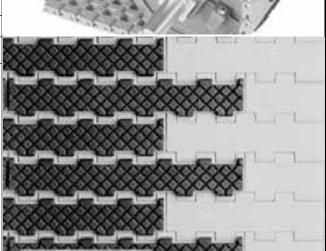

	Intralo	x [®] Flat									
	in.	mm									
Pitch	1.00	25.4									
Minimum Width (FFT)	6	152									
Minimum Width (FFT Ultra)	6	152									
Width Increments	1.00	25.4									
Hinge Style	Clos	sed									
Drive Method	Center/Hir	ge-driven									
Product	Notes										
width measurement and sto designing a conveyor or or	 Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt. Fully flush edges with SLIDELOX® rod retention feature. 										

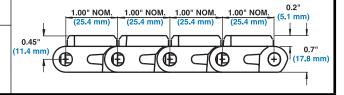
- SLIDELOX® is available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Standard indents for friction top surface are 2 in. (51 mm) and 0.22 in. (6 mm).
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs.
- Friction top available in grey PP with grey rubber, grey PP with black rubber and white PP with white rubber.
- Grey rubber has a hardness of 64 shore A. White and black rubber have a hardness of 55 Shore A.
- White and Black Rubber are FDA approved.
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Inset: SLIDELOX® Rod Retention Feature

	Belt Data												
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	Agency Acceptability 1=White, 2=Blue, 3=Natural		•			
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^a	EU MC ^b			
Polypropylene (FFT)	Nylon	1800	2678	34 to 150	1 to 66	2.24	10.94	1					
Polypropylene (FFT Ultra)	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	1					
Polyethylene (FFT)	Nylon	1000	1488	-50 to 120	-46 to 49	2.33	11.38						
Polyethylene (FFT Ultra)	Nylon	1000	1488	-50 to 120	-46 to 49	2.70	13.18						


- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.


	Sqı	uare Fri	ction Top
	in.	mm	4 45 46 46
Pitch	1.00	25.4	40.4
Minimum Width (SFT)	6	152	
Minimum Width (SFT Ultra)	6	152	_d2
Width Increments	1.00	25.4	
Hinge Style	Clo	sed	
Drive Method	Center/hir	nge-driven	150

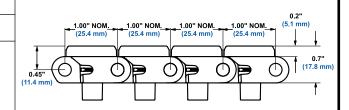
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with SLIDELOX® rod retention feature.
 SLIDELOX® is available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- Available with black rubber on grey polypropylene or black polyethlyene.
- Black rubber has a hardness of 45 shore A.
- Minimum indent is 2 in. (50.8 mm).
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- · See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Inset: SLIDELOX® Rod Retention Feature

	Belt Data												
Belt Material	Standard Rod Material	BS	Belt Strength		emperature Range (continuous)			Agency 1=White, 2=Bl	/ Acceptabi ue, 3=Natu	•			
	Ø 0.24 in. (6.1 mm)		kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	Ja	EU MCb			
Polypropylene (SFT)	Nylon	1800	2678	34 to 150	1 to 66	2.21	13.43						
Polypropylene (SFT Ultra)	Nylon	1800	2678	34 to 150	1 to 66	2.60	12.69						
Polyethylene (SFT)	Nylon	1000	1488	-50 to 120	-46 to 49	2.32	11.31						
Polyethylene (SFT Ultra)	Nylon	1000	1488	-50 to 120	-46 to 49	2.68	13.08						

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

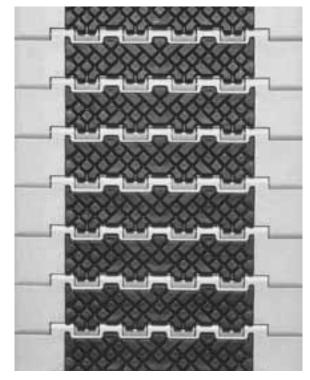

3.25	in. MTV	/ Flat Fr
	in.	mm
Pitch	1.00	25.4
Molded Width	3.25	83
Opening Sizes (approx.)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/Hin	ge-Driven

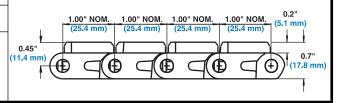
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.
- Tracking tabs provide lateral tracking.
- Fully flush edges with SLIDELOX™ rod retention feature.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Available with black rubber on blue acetal.
- Black rubber has a hardness of 54 Shore A.
- Indent for Friction Top surface is 0.5 in. (12.7 mm).
- One sprocket can be placed on the 3.25 in (83 mm) Mold To Width tabbed belt.
- Width tolerances for the Series 1400 Mold to Width belts are +0.000/-0.020 in. (+0.000/-0.500 mm).
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- Series 1400 Mold to Width belts are boxed in 10 ft. (3.05 m) increments.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data												
Belt Material	Standard Rod Material	Belt Strength			W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural,			Grey			
	Ø 0.24 in. (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	EU MC ^e
Acetal	Nylon	700	318	-10 to 130	-23 to 54	0.94	1.40						

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.




	M	old to	Wi	dth Squ
		in.		mm
Pitch		1.00		25.4
Molded Width (SFT Ultra)		6		152
Open Area			0%	%
Hinge Style			Clos	sed
Drive Method		Cente	r/hin	ge-driven

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with SLIDELOX® rod retention feature.
 SLIDELOX® is available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- Available with black or grey rubber on grey polypropylene.
- Black rubber has a hardness of 45 shore A. Grey rubber has a hardness of 64 shore A.
- Rubber indent is 1 in. (25.4 mm).
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Up to three sprockets can be placed on the 6.0 in. (152 mm) mold to width belt.
- Width tolerances for the Series 1400 Mold To Width belts are +0.000/-0.020 in. (+0.000/-0.500 mm).
- Series 1400 Mold To Width belts are boxed in 10 ft. (3.05 m) increments.

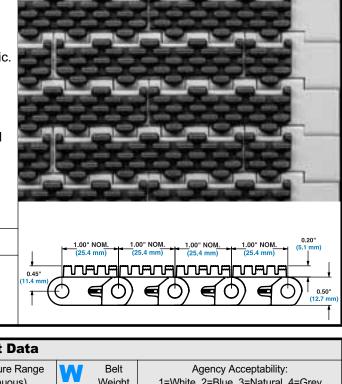
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

Belt Data												
Belt Material	Material	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	_	ncy Accepta Blue, 3=Na	bility: tural, 4=Grey		
	Ø 0.24 in. (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	Ja	EU MC ^b		
Polypropylene (SFT Ultra)	Nylon	800	386	34 to 150	1 to 66	1.15	1.71					

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

HICHAGHO			JL.
	0	val Frict	tion Top
	in.	mm	
Pitch	1.00	25.4	THE REAL PROPERTY.
Minimum Width	6	152	A STATE OF THE PARTY OF THE PAR
Width Increments	1.00	25.4	2000
Open Area	0,	%	
Hinge Style	Clo	sed	2.1.7.7.7.7
Drive Method	Center/hir	nge-driven	de de
Product	Notes		
Always check with Custom width measurement and significant appropriate appropriate and significant appropriate appropriat	tock status be	fore	
designing a conveyor or o Fully flush edges with SLIDE SLIDELOX® is available in p Robust design offers excelle durability, especially in tough	ELOX® rod rete polypropylene o ent belt and spro	ntion feature. or acetal. ocket	

shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.


Most Series 1400 sprockets use the split design so

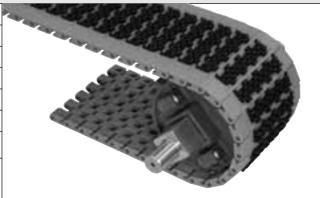
- Available with black rubber on grey polypropylene.
- Black rubber has a hardness of 55 shore A.
- Rubber indent is 1 in. (25.4 mm).

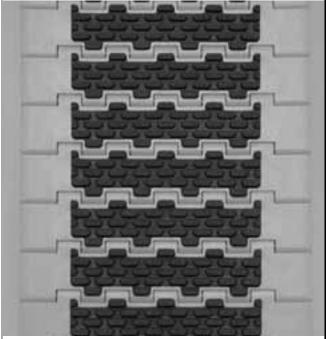
applications.

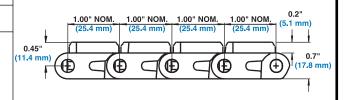
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data											
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	_	ency Acceptabilit =Blue, 3=Natura	-		
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^a	EU MCb		
Polypropylene	Nylon	1800	2678	34 to 150	1 to 66	2.29	11.18	•				


- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

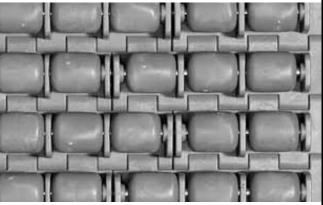


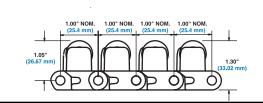

	Mold to V	Vidth O	val Friction Top
	in.	mm	
Pitch	1.00	25.4	
Molded Width (SFT Ultra)	6	152	-
Open Area	09	%	
Hinge Style	Clos	sed	
Drive Method	Center/hin	ige-driven	4
	_		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with SLIDELOX® rod retention feature.
 SLIDELOX® is available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs. The Series 1400 sprockets are all plastic.
- Available with black rubber on grey polypropylene.
- Black rubber has a hardness of 55 shore A.
- Rubber indent is 1 in. (25.4 mm).
- If a center-drive set up is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Up to three sprockets can be placed on the 6.0 in.
 (152 mm) mold to width belt.
- Width tolerances for the Series 1400 Mold To Width belts are +0.000/-0.020 in. (+0.000/-0.500 mm).
- Series 1400 Mold To Width belts are boxed in 10 ft.
 (3.05 m) increments.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

				Belt Dat	а					
Belt Material	Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	_	ncy Accepta Blue, 3=Na	ability: tural, 4=Grey
	Ø 0.24 in. (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	J ^a	EU MC ^b
Polypropylene (OFT Ultra)	Nylon	800	386	34 to 150	1 to 66	1.15	1.71	•		


- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Roller	Top™
	in.	mm	
Pitch	1.00	25.4	CA LA
Minimum Width	5	127	
Width Increments	1.00	25.4	
Roller Diameter	0.70	17.8	_
Roller Length	0.83	21.0	
Open Area	C)%	
Hinge Style	Clo	osed	
Drive Method	Center/hi	nge-driven	1
Drodi	ict Notes		

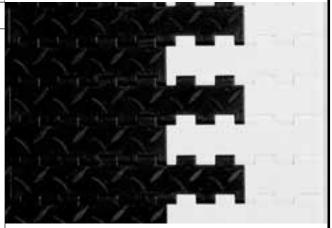
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Allows low back pressure accumulation for gentle product handling.
- 144 rollers per square foot of belt provide greater product-to-roller contact.
- Standard roller indent is 0.75 in. (19 mm)
- 1 in. (25.4 mm) roller spacing.
- Available in white and grey acetal.
- Stainless steel roller axle pins for durability.
- Robust design offers excellent belt and sprocket durability.
- SLIDELOX® flush edges. SLIDELOX® is available in polypropylene or acetal.
- Back-up load is 5-10% of product weight.

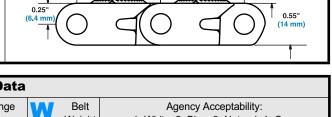
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

				Belt D	ata					
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	_	ncy Acceptat Blue, 3=Natu	
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	Ja	EU MCb
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	5.83	28.47	•	3	•

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

0.05"


		Non	Skid
	in.	mm	
Pitch	1.00	25.4	
Minimum Width	9	229	
Width Increments	1.00	25.4	
Opening Size (approx.)	-	-	4
Open Area	00	%	40
Hinge Style	Clo	sed	
Drive Method	Center/hin	ige-driven	
		-	


Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Robust design offers excellent belt and sprocket durability.
- SLIDELOX® rod retention system. SLIDELOX® is available in polypropylene or acetal.
- 1.00 (25.4 mm) pitch accommodates small drive sprockets for low-profile people carriers.
- Diamond tread pattern provides a non-skid walking surface to increase safety.
- Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Edges have Flat Top surface (no treads).

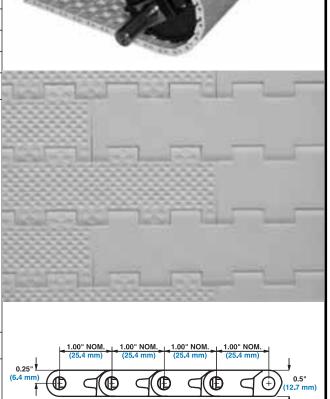
Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

1.00" NOM.

1.00" NOM

				В	elt Data									
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	1=	Agen White, 2=I	ncy Acce Blue, 3=I		•	1=Gr	еу
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
HS EC Acetal	Nylon	1875	2790	-50 to 200	-46 to 93	2.78	13.57					3		•
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	2.32	11.33	•				3		•

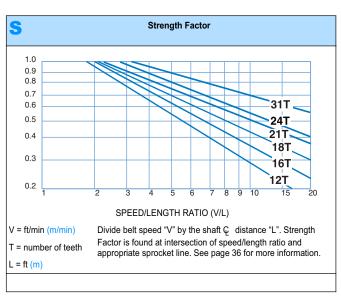

- a. USDA Dairy acceptance requires the use of a clean-in-place system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

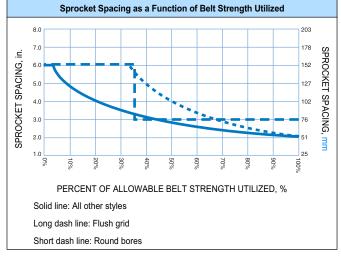
	Embe	dded D	iamond Top
	in.	mm	2000
Pitch	1.00	25.4	,4595
MInimum Width	12.0	304.8	A5535
Opening Sizes (approx.)	-	-	45000
Open Area	0'	%	
Hinge Style	Clo	sed	-
Drive Method	Center/Hir	nge-Driven	
	4 - 4		

- · Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Minimum 2 inch (51 mm) Flat Top indent from flush
- Smooth, closed surface with fully flush edges.
- Robust design offers excellent belt and sprocket
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and change overs.
- Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life.
- Utilizes SLIDELOX® rod retention system.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

				В	elt Data									
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	1=V	Agend White, 2=B	y Accep lue, 3=N		-	-Gre	y
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	1.70	8.30	•				3		•


- a. USDA Dairy acceptance requires the use of a clean-in-place system.
- b. Canada Food Inspection Agencyc. Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		Sprocket a	nd Support Quantity Refere	ence
Belt Wid	Ith Range ^a	Minimum Number of	V	Vearstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
5	127	2	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	2	3	2
12	305	3	3	2
14	356	3	4	3
16	406	3	4	3
18	457	3	4	3
20	508	5	5	3
24	610	5	5	3
30	762	5	6	4
32	813	7	7	4
36	914	7	7	4
42	1067	7	8	5
48	1219	9	9	5
54	1372	9	10	6
60	1524	11	11	6
72	1829	12	13	7
84	2134	15	15	8
96	2438	17	17	9
		dd Number of Sprockets ^c at 52 mm) & Spacing	Maximum 6 in. (152 mm) © Spacing	Maximum 12 in. (305 mm) Ç Spacing

- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 5 in. (127 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

 The center sprocket should be leaked down. With only two sprockets fix the sprocket on the drive journal side only.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location. For Flush Grid, see Locked Sprocket Location chart in the Installation Instruction Guidelines or call Customer Service for lock down location.

						Pla	astic S	prock	et Dat	aª	
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub		Available E Sizes	1	s Sizes	
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in.	Square in.	Round mm	Square mm	
12 (3.41%)	3.9	99	3.9	99	1.5	38	-	1.5	-	40	
18 (1.52%)	5.7	145	5.8	148	1.5	38	2	2.5	50	60	
24 (0.86%)	7.7	196	7.8	198	1.5	38		2.5		60	
											1 - Pitch diameter 2 - Outer diameter 3 - Hub width

a. Contact Customer Service for lead times.

Maxi	Maximum Belt Rating for Glass Filled Nylon Round Bore Split Sprockets Based on Round Bore Size Range ^a														
No. of Teeth	Nom. Pitch Diameter		1 in 1-3/16 in.		1-1/4 1-3/8			6 in 4 in.	1-13/16 i	n 2 in.	25 mm - 35 mm		40 mm - 50 mm		
	in.	mm	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	lb/ft kg/m		lb/ft	kg/m	lb/ft	kg/m	
16	5.1	130	1500	2232	1740	2589	2100	3125	2160	3214	1140	1697	2160	3214	
18	5.7	145	1800	2679	2040	3036	2400	3572	3240	4822	1440	2143	2460	3661	
21	6.7	170	1350	2009	1650	2455	2100	3125	3000	4464	1050	1563	2400	3572	

a. The belt rating based on round bore sprocket size is used to determine sprocket spacing as a function of belt strength utilized. It may also be used for all other calcuations. However, if the rating for the belt material and belt style is lower then the belt rating based on the round bore sprocket size, then the lower rating should be used for all calculations other than sprocket spacing.

	Glass Filled Nylon Split Sprocket Data														
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable l	Bore Sizes						
Teeth (Chordal	Pitch Dia.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S. Siz	zes	Metric S	Sizes					
Action)	in.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm	-26				
16 (1.92%)	5.1	130	5.2	132	2.0	51	1 to 2 in 1/16 increments	1.5	25 to 50 in 5 increments	40	1				
18	5.7	145	5.8	148	2.0	51	1 to 2 in	1.5	25 to 50 in	40	-				
(1.52%)							1/16 increments	2.5	5 increments	60					
21	6.7	170	6.8	172	2.0	51	1 to 2 in	1.5	25 to 50 in	40					
(1.12%)							1/16 increments ^c	2.5	5 increments	60					

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
- c. Tight fit round bores are available in 1-1/4, 1-3/16, 1-1/2, and 1-7/16 in.

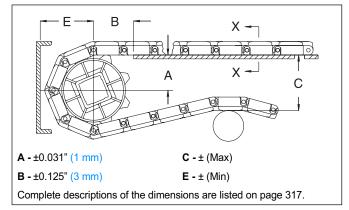
				1	Na	atura	I FDA Ny	lon Sp	lit Spro	cket D	ataª ———————
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	Bore Sizes		
Teeth (Chordal	Pitch Dia.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S. Si	zes	Metric	Sizes	. 2.5.
Action)	in.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm	THE .
16 (1.92%)	5.1	130	5.2	132	1.5	38	1.25	1.5			
18 (1.52%)	5.7	145	5.8	148	1.5	38	1.25	1.5			No.

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

				Po	lypro	pylene	Comp	osite	Split S	procke		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. Sizes		Metric	ric Sizes		
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round	Square	Round	Square		
,							in. ^b	in.	mm ^b	mm		
18	5.7	145	5.8	148	2.0	51		1.5		40		
(1.52%)								2.5		60		
21	6.7	170	6.8	172	2.0	51		1.5		40		
(1.12%)								2.5				

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

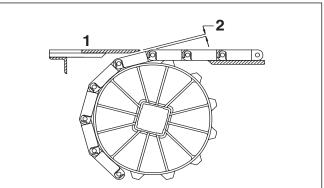
				Po	lyuret	hane	Compo	site S	plit Sp	orocke
No. of	Nom.	Nom.	Nom.			Nom.	A	vailable E	Bore Size	s
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Bia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
31	9.9	251	10.1	257	1.50	38		3.5		
(0.51%)					1.67	44		2.5 ^b		


- a. Contact Customer Service for lead times.
- b. The 2.5" square bore is created by using a bore adapter in the 3.5" square bore sprocket.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.


Spr	ocket Des	scription	Α		E	3	()		E
Pitch D	iameter	No Tooth	Range (Bottor	m to Top)						
in.	mm	No. Teeth	in.	mm	in.	mm	in.	mm	in.	mm
1		SERIES 14	00 FLAT TOP, FL	USH GRID, I	EMBEDE	ED DIA	MOND T	ОР		
3.9	99	12	1.62-1.68	41-43	1.80	46	3.86	98	2.24	57
5.1	130	16	2.26-2.32	57-59	2.11	54	5.13	130	2.88	73
5.7	145	18	2.59-2.63	66-67	2.22	56	5.76	146	3.19	81
6.7	170	21	3.07-3.10	78-79	2.44	62	6.71	170	3.75	95
7.7	196	24	3.55-3.58	90-91	2.64	67	7.66	195	4.14	105
9.9	251	31	4.67	119	3.07	78	9.88	251	5.25	133
	SERIE	ES 1400 FLAT	FRICTION TOP,	SQUARE FR	ICTION	TOP, O\	/AL FRI	CTION T	OP	
3.9	99	12	1.62-1.68	41-43	1.80	46	4.06	103	2.44	62
5.1	130	16	2.26-2.31	57-59	2.11	54	5.33	135	3.08	78
5.7	147	18	2.59-2.63	66-67	2.22	56	5.96	151	3.39	86
6.7	170	21	3.07-3.10	78-79	2.44	62	6.91	176	3.87	98
7.7	196	24	3.55-3.58	90-91	2.64	67	7.86	200	4.34	110
9.9	251	31	4.67	119	3.07	78	10.08	256	5.45	138
			SERIES	1400 ROLLE	R TOP					
3.9	99	12	1.62-1.68	41-43	1.80	46	4.66	118	3.04	77
5.1	130	16	2.26-2.31	57-59	2.11	54	5.93	151	3.68	93
5.7	145	18	2.59-2.63	66-67	2.22	56	6.56	167	3.99	101
6.7	170	21	3.07-3.10	78-79	2.44	62	7.51	191	4.47	113
7.7	196	24	3.55-3.58	90-91	2.64	67	8.46	215	4.94	125
9.9	251	31	4.67	119	3.07	78	10.68	271	6.05	154
			SERIE	S 1400 NON	SKID					
3.9	99	12	1.62-1.68	41-43	1.80	46	3.91	99	2.29	58
5.1	130	16	2.26-2.31	57-59	2.11	54	5.18	132	2.93	74
5.7	145	18	2.59-2.63	66-67	2.22	56	5.81	148	3.24	82
6.7	170	21	3.07-3.10	78-79	2.44	62	6.76	172	3.72	94
7.7	196	24	3.55-3.58	90-91	2.64	67	7.71	196	4.19	106
9.9	251	31	4.67	119	3.07	78	9.93	252	5.30	135

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

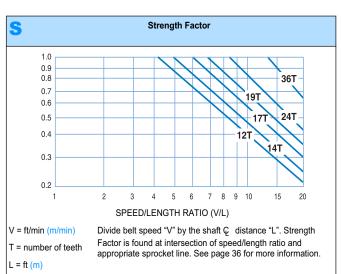
Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

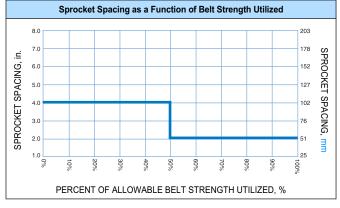
	Sprocket Description	on	Gap			
Pitch	Diameter	No. Teeth	in.	mm		
in.	mm	NO. Teetii		mm		
3.9	99	12	0.066	1.7		
5.1	130	16	0.050	1.3		
5.7	145	18	0.044	1.1		
6.7	170	21	0.038	1.0		
7.7	196	24	0.033	0.8		
9.9	251	31	0.025	0.6		

		Flush	Grid
	in.	mm	Charles Strategy of the Strate
Pitch	0.50	12.7	111111111111111111111111111111111111111
Minimum Width	8	203	4.100
Width Increments	0.50	12.7	0.000
Opening Sizes (approximate)	0.87 × 0.30	22.1 × 7.6	4113 20000
	0.66 × 0.30	16.8 × 7.6	41. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Open Area	48	%	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hinge Style	Ор	en	1 3 x x x x x x x x x x x x x x x x x x
Drive Method	Hinge-	driven	
Product	Notes		
width measurement and sto designing a conveyor or or • Designed for a 0.5 in. (12.7 m • Smooth upper surface with fu • 0.140 in. (3.6 mm) diameter r • The detectable material has s ASTM_D257 of 545 Ohms pe	dering a belt. nm) nosebar. illy flush edges ods. Surface Resisti er square.	ivity per	
Additional In	nformation	on	⊸ A
 See "Belt selection process" (See "Standard belt materials" See "Special application belt See "Friction factors" (page 3 	"(page 18) <i>materials"</i> (pag	ge 18)	0.125" 0.50" NOM. 0.50" NOM. 0.50" NOM. (12.7 mm) (12.7 mm) (12.7 mm) (2.50" NOM. (12.7 mm) (12.7 mm) (3.2 mm) (12.7 mm) (12.7 mm) (12.7 mm) (3.2 m

	Belt Data														
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	1=\	Age White, 2=	ncy Acce Blue, 3=	•	•	irey		
	Ø 0.140 in. (3.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	EU MC ^e	J ^f		
Polypropylene	Polypropylene	125	186	34 to 220	1 to 104	0.44	2.12	•				•	3		
Polypropylene	Acetal	150	223	34 to 200	1 to 93	0.51	2.40	•				•	3		
FDA HR Nylon ^g	Nylon	175	260	-50 to 240	-46 to 116	0.58	2.83	•							
Acetal	Acetal	240	357	-50 to 200	-46 to 93	0.73	3.56	•				•	3		
Detectable Polypropylene ^h	Acetal	80	119	0 to 150	-18 to 66	0.56	2.73	•				•	4		
X-Ray Detectable Acetal ⁱ	Acetal	240	357	-50 to 200	-46 to 93	0.78	3.66	•							

- a. Prior to Intralox's development of the Series 1500, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- b. USDA Dairy acceptance requires the use of a clean-in-place-system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- f. Japan Ministry of Health, Labour, and Welfare
- g. This product may not be used for food contact articles that will come in contact with food containing alcohol.
- h. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.
- i. Designed specifically to be detected by x-ray machines.

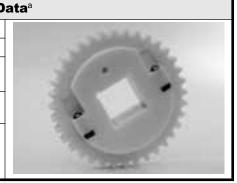



	Sprocket and Support Quantity Reference											
Belt Wid	dth Range ^a	Minimum Number of Sprockets	١	Vearstrips								
in.	mm	Per Shaft ^b	Carryway	Returnway								
8	203	3	3	2								
10	254	3	3	2								
12	305	3	3	2								
14	356	3	4	3								
16	406	5	4	3								
18	457	5	4	3								
20	508	5	5	3								
22	559	5	5	3								
24	610	7	5	3								
26	660	7	6	4								
28	711	7	6	4								
30	762	7	6	4								
32	813	9	7	4								
34	864	9	7	4								
36	914	9	7	4								
38	965	9	8	5								
40	1016	11	8	5								
42	1067	11	8	5								
44	1118	11	9	5								
46	1168	11	9	5								
48	1219	13	9	5								
50	1270	13	10	6								
52	1321	13	10	6								
54	1372	13	10	6								
56	1422	15	11	6								
58	1473	15	11	6								
60	1524	15	11	6								
62	1575	15	12	7								
64	1626	17	12	7								
For Other Wid	Iths, Use Odd Num (152 mm)	ber of Sprockets ^c at Maximum 6 in. Ç Spacing	Maximum 6 in. (152 mm) € Spacing	Maximum 12 in. (305 mm) € Spacing								

- Belts are available in 0.50 in. (12.7 mm) increments beginning with 8 in. (203 mm). If the actual width is critical, consult Customer Service.

 These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

 The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Locked Sprocket Location chart in the Installation Instruction Guidelines or call Customer Service for lock down location.



	Sprocket Data ^a													
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	S				
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes				
Action)		mm	in.	mm	in.	mm	Round in. ^b	Square in.	Round mm ^b	Square mm				
10 (4.89%)	1.6	41	1.8	46	0.64	16		5/8						
12 (3.41%)	1.9	48	2.1	53	0.67	17	1	1.0	25					
14 (2.51%)	2.3	58	2.4	61	0.75	19	3/4, 1, 1-3/16, 1-1/4	1.0	25					
17 (1.70%)	2.7	69	2.9	73	0.75	19	3/4, 1, 1-3/16, 1-1/4, 1-3/8		25					
19 (1.36%)	3.1	79	3.2	82	0.75	19	1, 1-3/8							
24 (0.86%)	3.8	97	4.0	101	0.75	19	1	1.5	25	40				
36 (0.38%)	5.7	145	5.9	150	0.75	19	1	1.5		40				

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

					Natu	ral FD	A Nylo	n Split	t Spro	cket D		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes					
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes		
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm		
24 (0.86%)	3.8	97	4.0	101	1.5	38				40		
36 (0.38%)	5.7	145	5.9	150	1.5	38				40		

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

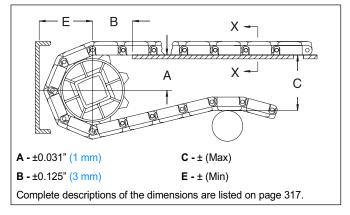
		Flush Grid Base Fligh	ts (Streamline)
Available F	light Height	Available Materials	
in.	mm	Available Materials	
1	25	Acetal, FDA Nylon	

Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flush Grid flight is smooth (Streamline) on both sides.

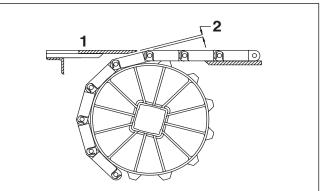
Note: The minimum indent is a function of belt width and ranges from 3 in. (76 mm) to 3.75 in. (95 mm).



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Spr	ocket De	scription	Α	В		С		Е		
Pitch E	Diameter	No. Teeth	Range (Botto	m to Top)	in	mana	in.	mm	in	mm
in.	mm	NO. Teetii	in.	mm	in.	mm	111.	mm	in.	mm
SERIES 1500 FLUS		GRID								
1.6	41	10	0.64-0.68	16-17	1.13	29	1.62	41	1.00	25
1.9	48	12	0.81-0.84	21	1.24	31	1.93	49	1.15	29
2.3	58	14	0.97-1.00	25	1.34	34	2.25	57	1.31	33
2.7	69	17	1.21-1.24	31	1.49	38	2.72	69	1.55	39
3.1	79	19	1.37-1.39	35	1.59	40	3.04	77	1.71	43
3.8	97	24	1.77-1.79	45	1.76	45	3.83	97	2.10	53
5.7	145	36	2.73-2.74	69-70	2.71	55	5.74	146	3.06	78

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	on	Gap					
Pitch Diameter		No. Teeth	in.	mm				
in.	mm	- NO. 16601	111.	11111				
1.6	41	10	0.040	1.0				
1.9	48	12	0.033	0.8				
2.3	58	14	0.028	0.7				
2.7	69	17	0.023	0.6				
3.1	79	19	0.021	0.5				
3.8	97	24	0.017	0.4				
5.7	145	36	0.011	0.3				

0440440		OLIVIEG 100		
	Ор	en Hinge	e Flat Top	
	in.	mm		
Pitch (nominal)	1.00	25.4		
Minimum Width	5	127	500 man	
Width Increments	0.50	12.7	32	
Opening Size (approx.)	_	_		
Open Area	0	%		
Hinge Style	Or	pen		
Drive Method	Center	r-driven		
Produc	t Notes		innadadadadana.	17
Always check with Custo width measurement and designing a conveyor or	stock status be	fore	unanjananahaan	1
 Smooth, closed upper surfarecessed rods. 	ace with fully flus	sh edges and	and the state of t	ry.
 Cam-link designed hinges area as belt goes around the 			with the parameters of the state of	

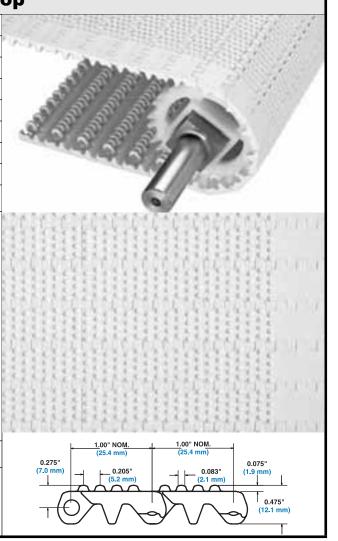
this area. Fully sculpted and radius corners - no pockets or sharp corners to catch and hold debris.

Intralox feature allows unsurpassed cleaning access to

- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 1600 Open Hinge Flat Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- No-Cling flights are available. Standard height is 4" (102 mm) or they can be cut down to custom heights.

Additional Information	1
See "Belt selection process" (page 5) See "Standard belt materials" (page 18) See "Special application belt materials" (page 18) See "Friction factors" (page 31)	0.20" (5.1 mm) 0.40" (10.2 mm) (25.4 mm)
D-14 D	-1-

	Belt Data													
Belt Material	Material Streng		Belt Strength	Temperature Range (continuous)		W	Belt Weight	Agency Acceptability ^a 1=White, 2=Blue, 3=Natural, 4=G			=Gre	;y		
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.05	5.13	•	1			3		•
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.10	5.37	•	3			3		•
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.58	7.71	•	1			3		•
Acetal	Polyethylene ^h	1000	1490	-50 to 150	-46 to 66	1.58	7.71	•	1			3		•

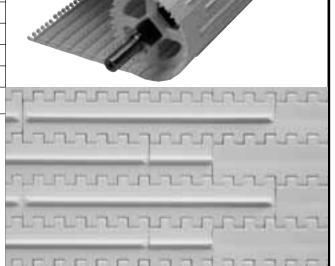

- Prior to Intralox's development of the Series 1600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- USDA Dairy acceptance requires the use of a clean-in-place system.
- Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
 MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system. e. f.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

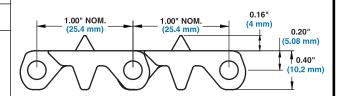
		Nub T
	in.	mm
Pitch	1.00	25.4
Minimum Width	5	127
Width Increments	0.50	12.7
Open Area	0	%
Product Contact Area	10)%
Hinge Style	Ор	en
Drive Method	Center	-Driven
Duadua	4 No4oo	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- No-Cling flights are 4" (102 mm) high and can be cut to any size. Molded as an integral part of the belt, the flights are available in polypropylene, polyethylene, and acetal.
- Belt has closed upper surface with fully flush edges and recessed rods.
- Recommended for products large enough to span the distance between the nubs [0.250" (6.35 mm)].
- Standard flights available.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.
- Standard nub indent is 1.3" (33 mm).

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material Standard Rod Material		BS	Belt Temperature Range (continuous)			W	Belt Weight	Agency Acceptability						
Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.13	5.52	•				3		•
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.18	5.76	•				3		•
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.74	8.49	•				3		•
Acetal	Polyethylene ^h	1000	1490	-50 to 150	-46 to 66	1.74	8.49	•				3		•


- a. Prior to Intralox's development of the Series 1600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- b. USDA Dairy acceptance requires the use of a clean-in-place system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- h. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

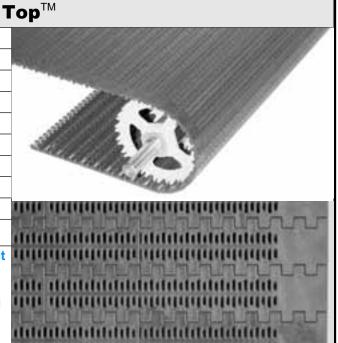


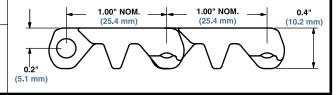
		Mini l	Rib			
	in.	mm	79			
Pitch (nominal)	1.00	25.4				
Minimum Width	5	127				
Width Increments	0.50	12.7				
Opening Size (approx.)	_	_				
Open Area	0,	%	7			
Open Area 0% Hinge Style Open						
Drive Method	Center	-driven				
Product	Notes		-74			
Always check with Custom width measurement and st designing a conveyor or o	ock status bet rdering a belt.	fore	H			

- Closed upper surface with fully flush edges and recessed rods.
- Cam-link designed hinges expose more hinge and rod area as belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radius corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 1600 Open Hinge Mini Rib channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- No-Cling flights are available. Standard height is 4 in. (102 mm) or they can be cut down to custom heights.
- 0.16 in. (4 mm) Mini Rib on surface accommodates gradual inclines and declines. Not recommended for back-up conditions.
- Minimum rib indent is 1.5 in. (38 mm).

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength				Belt Weight	Agency Acceptability						
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	J ^d	EU MC ^e		
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.05	5.13	•	1		3	•		
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.58	7.71	•	1		3	•		


- a. Prior to Intralox's development of the Series 1600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- b. USDA Dairy acceptance requires the use of a clean-in-place system.
- c. Canada Food Inspection Agency
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

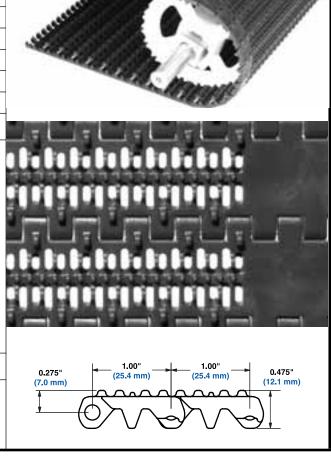


		Mesh 1
	in.	mm
Pitch	1.00	25.4
Minimum Width	5	127
Width Increments	0.50	12.7
Min. Opening Size (approx.)	0.06 x 0.12	1.5 x 3.0
Max. Opening Size (approx.)	0.06 x 0.20	1.5 x 5.1
Open Area (fully extended)	16	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
	·	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Cam-link designed hinges expose more hinge and rod area as belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radius corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of Series 1600 Mesh Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- No-Cling flights are available. Standard height is 4 in. (102 mm) or they can be cut down to custom heights.
- Standard Mesh Top indent is 1 in. (25 mm).

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	BS	Belt Strength					Agency Acceptability ^a 1=White, 2=Blue, 3=Natural, 4=Grey						еу	
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Acetal	Polypropylene	1200	1780	34 to 200	1 to 93	1.40	6.84	•				3		•
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.94	4.59	•				3		•

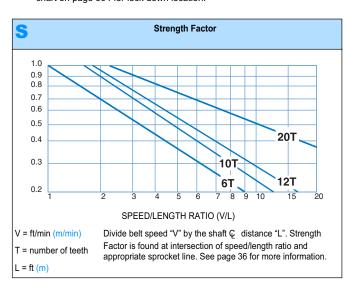

- a. Prior to Intralox's development of the Series 1600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- b. USDA Dairy acceptance requires the use of a clean-in-place system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

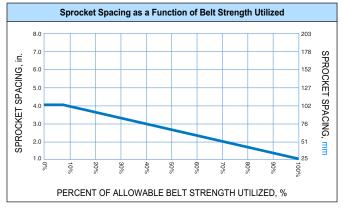
	N	lesh Nu	b Top™
	in.	mm	SECTION S
Pitch	1.00	25.4	The Real Property lies
Minimum Width	5	127	
Width Increments	0.50	12.7	
Min. Opening Size (approx.)	0.06 x 0.12	1.5 x 3.0	
Max. Opening Size (approx.)	0.06 x 0.20	1.5 x 5.1	- Little
Open Area	16	%	1
Hinge Style	Ор	en	
Drive Method	Center-	-Driven	
Product	Notes		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully sculpted and radius corner no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drive bar on the underside of the S1600 Mesh Nub Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests.
- No Cling Flights are available. Standard height is 4 in. (102 mm) or they can be cut down to custom heights.
- Standard Mesh Nub Top indent is 1 in. (25.4 mm).

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Strength Temperature Range Weight Agency Accep							•	•			
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e
Acetal	Polypropylene	1200	1780	34 to 200	1 to 93	1.45	7.08	•					3	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.98	4.81	•					3	

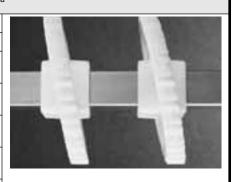

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



	Sprocket and Support Quantity Reference										
Belt Width Range ^a Minimum Number of Sprockets Per Shaft ^b Corporation Peturpwoy											
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway							
5	127	2	2	2							
6	152	2	2	2							
7	178	2	3	2							
8	203	3	3	2							
9	229	3	3	2							
10	254	3	3	2							
12	305	3	3	2							
14	356	5	4	3							
15	381	5	4	3							
16	406	5	4	3							
18	457	5	4	3							
20	508	5	5	3							
24	610	7	5	3							
30	762	9	6	4							
32	813	9	7	4							
36	914	9	7	4							
42	1067	11	8	5							
48	1219	13	9	5							
54	1372	15	10	6							
60	1524	15	11	6							
72	1829	19	13	7							
84	2134	21	15	8							
96	2438	25	17	9							
120	3048	31	21	11							
144	3658	37	25	13							
		dd Number of Sprockets ^c at 102 mm) ♀ Spacing	Maximum 6 in. (152 mm) ♀ Spacing	Maximum 12 in. (305 mm) Ç Spacing							

- Belts are available in 0.50 in. (12.7 mm) increments beginning with 5 in. (127 mm). If the actual width is critical, consult Customer Service.
- These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

 The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.

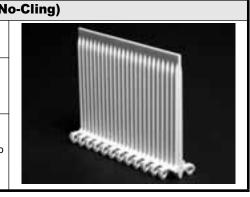


	EZ Clean Sprocket Data											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	vailable E	Bore Size	S		
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes		
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm		
6 (13.40%)	2.0	51	1.8	46	1.0	25	1.0		25			
10 (4.89%)	3.2	81	3.2	81	1.0	25	1.0	1.5	25	40		
12 (3.41%)	3.9	99	3.8	97	1.0	25		1.5		40		
20 (1.23%)	6.4	163	6.4	163	1.0	25		1.5		40		

- Contact customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 500 lb/ft (744 kg/m) will be de-rated to 500 lb/ft (744 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

					А	ngled	EZ CI	ean Sp	rocke	t Data
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round	Square	Round	Square
							in.	in.	mm	mm
12 (3.41%)	3.9	99	3.8	97	2.0	50.8		1.5		40
16 (1.92%)	5.2	132	5.1	130	2.0	50.8		1.5		40
20 (1.23%)	6.4	163	6.4	163	2.0	50.8		1.5		40

a. Contact customer Service for lead times.


		Open Hinge Flat Top Base Flight (N
Available F	light Height	Available Materials
in.	mm	Available Materials
4.0	102	
		Polypropylene, Polyethylene, Acetal
Note: Minimum inc	dent is 1.0 in (25.4	mm)

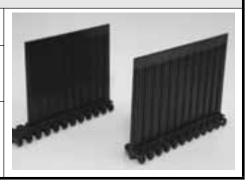
Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No

fasteners are required.

Note: The no-cling vertical ribs are on both sides of the flight.

Mesh Nub	Mesh Nub Top TM Base Flight (No-Cling)								
Available F	light Height	Available Materials							
in.	mm	Available Waterials							
4.0	102								
		Acetal							

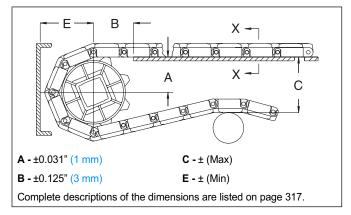

Note: Minimum indent is 1.0 in (25.4 mm)

Note: Flights can be cut down to any height required for a particular application.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No

fasteners are required.

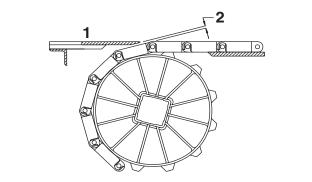
Note: The no-cling vertical ribs are on both sides of the flight.



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

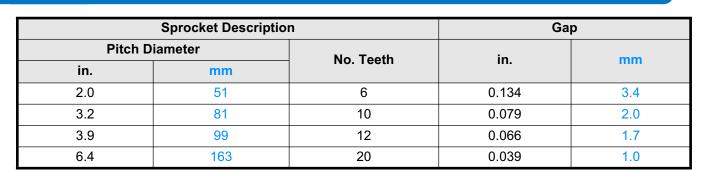
For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



S	Sprocket Des	cription	Α			3	(C		E
Pitch [Diameter	No. Teeth	Range (Botton	ı to Top)	in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	"".				"".	
	SERIES 1600 OPEN HINGE FLAT TOP, MESH TOP									
2.0	51	6	0.67-0.80	17-20	1.10	28	2.00	51	1.26	32
3.2	81	10	1.34-1.42	34-36	1.56	40	3.24	82	1.88	48
3.9	99	12	1.67-1.73	42-44	1.70	43	3.86	98	2.19	56
6.4	163	20	2.96-3.00	75-76	2.25	57	6.39	162	3.46	88
			SERIES 1600	NUB TOP, MES	H NUB TO	P			•	
2.0	51	6	0.67-0.80	17-20	1.10	28	2.08	53	1.34	34
3.2	81	10	1.34-1.42	34-36	1.56	40	3.31	84	1.96	50
3.9	99	12	1.67-1.73	42-44	1.70	43	3.94	100	2.27	58
6.4	163	20	2.96-3.00	75-76	2.25	57	6.47	164	3.53	90
	,		SEF	RIES 1600 MINI R	RIB	,	,	,		
2.0	51	6	0.67-0.80	17-20	1.10	28	2.16	55	1.42	36
3.2	81	10	1.34-1.42	34-36	1.56	40	3.40	86	2.04	52
3.9	99	12	1.67-1.73	42-44	1.70	43	4.02	102	2.35	60
6.4	163	20	2.96-3.00	75-76	2.25	57	6.55	166	3.62	92

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

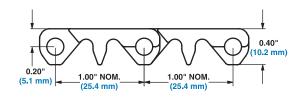

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

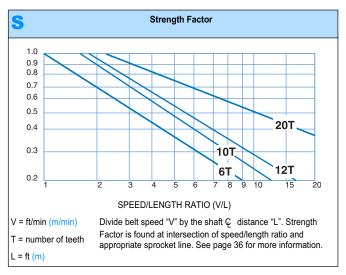
Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

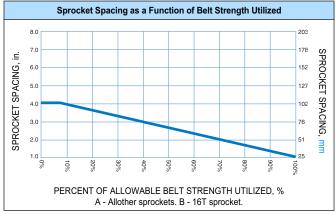
intralox.


S	eamFree	Minimu	m Hinge Flat Top
	in.	mm	
Pitch	1.00	25.4	
Minimum Width	4	102	7794
Width Increments	1.00	25.4	De
Opening Sizes (approx.)	-	-	A 61
Open Area	0,	%	-2000 CA
Hinge Style	Op	en	-00000000 A
Drive Method	Center-	-Driven	
Dradua	4 Notes		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth, closed upper surface with fully flush edges and recessed rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Drive Bar like Series 800 and Series 1800, the drivebar on the underside of S1650 SeamFree™ Minimum Hinge Flat Top in combination with the patent pending flume feature channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.
- Designed for use with S1600 Angled EZ Clean Sprockets but compatible with standard S1600 EZ Clean sprockets as well.
- Belts over 18" (457 mm) will be built with multiple modules per row, but seams will be minimized.

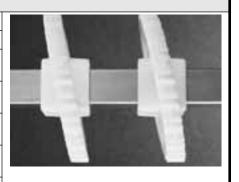
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength		ure Range nuous)	W	Belt Weight	1	Ag I-White, 2	ency Ac 2-Blue, 3	•	•	-Grey	,
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Acetal	Acetal	350	520	-50 to 200	-46 to 93	1.47	7.18	•				3		
Acetal	Polypropylene	325	480	34 to 200	1 to 93	1.40	6.84	•				3		
Acetal	Polyethylene	225	330	-50 to 150	-46 to 66	1.40	6.83	•				3		
Polypropylene	Polypropylene	225	330	34 to 220	1 to 104	0.91	4.44	•				3		


- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- o. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Sprocket and Support Quantity Reference										
Belt Wid	Ith Range ^a	Minimum Number of	W	/earstrips							
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway							
4	102	2	2	2							
5	127	2	2	2							
6	152	2	2	2							
7	178	2	3	2							
8	203	3	3	2							
9	229	3	3	2							
10	254	3	3	2							
12	305	3	3	2							
14	356	5	4	3							
15	381	5	4	3							
16	406	5	4	3							
18	457	5	4	3							
20	508	5	5	3							
24	610	7	5	3							
30	762	9	6	4							
32	813	9	7	4							
36	914	9	7	4							
42	1067	11	8	5							
48	1219	13	9	5							
54	1372	15	10	6							
60	1524	15	11	6							
72	1829	19	13	7							
84	2134	21	15	8							
96	2438	25	17	9							
120	3048	31	21	11							
144	3658	37	25	13							
		dd Number of Sprockets ^c at 02 mm) & Spacing	Maximum 6 in. (152 mm) € Spacing	Maximum 12 in. (305 mm) € Spacing							

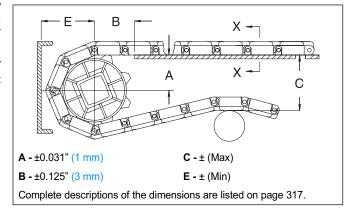
- a. Belts are available in 1.0 in. (25.4 mm) increments beginning with 4 in. (101.6 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only.



						EZ	Clean	Sproc	ket Da	ta ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available Bore Sizes			
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm	
6 (13.40%)	2.0	51	1.8	46	1.0	25	1.0		25		
10 (4.89%)	3.2	81	3.2	81	1.0	25	1.0	1.5	25	40	
12 (3.41%)	3.9	99	3.8	97	1.0	25		1.5		40	
20 (1.23%)	6.4	163	6.4	163	1.0	25		1.5		40	

- a. Contact customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 500 lb/ft (744 kg/m) will be de-rated to 500 lb/ft (744 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

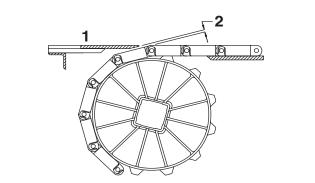
	Angled EZ Clean Sprocket Data									
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes			s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. Sizes		Metric Sizes	
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in.	Square in.	Round mm	Square mm
12 (3.41%)	3.9	99	3.8	97	2.0	50.8		1.5		40
16 (1.92%)	5.2	132	5.1	130	2.0	50.8		1.5		40
20 (1.23%)	6.4	163	6.4	163	2.0	50.8		1.5		40


a. Contact customer Service for lead times.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Sprocket Description			Α		В		С		E	
Pitch Diameter		No. Teeth	Range (Bottom to Top)		in.	mm	in.	mm	in.	mana
in.	mm	NO. IEEUI	in.	mm		111111			111.	mm
SEAMFREE™ MINIMUM HINGE FLAT TOP										
2.0	51	6	0.67-0.80	17-20	1.10	28	2.00	51	1.26	32
3.2	81	10	1.34-1.42	34-36	1.56	40	3.24	82	1.88	48
3.9	99	12	1.67-1.73	42-44	1.70	43	3.86	98	2.19	56
6.4	163	20	2.96-3.00	75-76	2.25	57	6.40	163	3.46	88

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

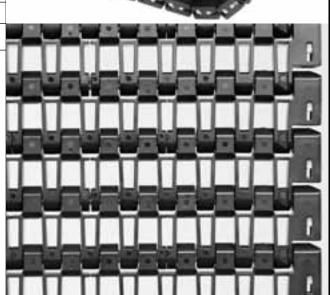
	Sprocket Description	Gap			
Pitch [Diameter	No. Teeth	in.	mm	
in.	mm	No. reem			
2.0	51	6	0.134	3.4	
3.2	81	10	0.079	2.0	
3.9	99	12	0.066	1.7	
6.4	163	20	0.039	1.0	

0.75

1.50"

(38.1 mm)

(19.0 mm)



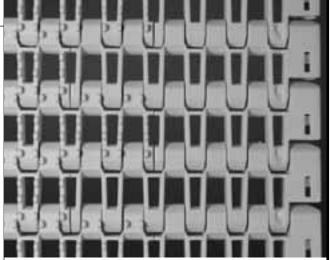
		Flush	Grid
	in.	mm	1
Pitch	1.50	38.1	
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	0.62 × 0.50	15.7 × 12.7	
	0.70 × 0.26	17.8 × 6.6	
Open Area	37	%	
Hinge Style	Clo	sed	
Drive Method	Center/Hir	nge-Driven	
	4 81 4		SHAPE THE REAL PROPERTY.

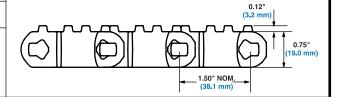
Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with highly visible, orange acetal SLIDELOX® rod retention feature.
- Robust design offers excellent belt and sprocket durability, especially in tough material handling applications.
- Abrasion resistant system lasts 2.5 to 3 times longer than conventional modular plastic belts.
- Sprockets have large lug teeth.
- Multi-rod hinge design significantly reduces cam shafting. Every row contains two rectangular rods.
- Abrasion resistant nylon used in modules and rods.
- Ultra abrasion resistant polyurethane sprockets.
- Steel is preferred carryway material.
- Chevron pattern or flat continuous carryway recommended. Straight, parallel wearstrips should not be used.
- Do not use on pusher conveyors.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	Temperatu (contin	ure Range uous) ^a	W	Belt Weight	1=\	Ager Vhite, 2=	ncy Acc Blue, 3				Grey
	0.25 × 0.17 in. (6.4 × 4.3 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^c	CFA ^d	A ^e	J ^f	Z ^g	EU MC ^h
AR Nylon	Nylon	1800	2678	-50 to 212	-46 to 100	2.21	10.78	•						


- a. Sprocket temperatures should be limited to -40 to 160 °F (-40 to 70 °C). Belt used in temperature range of 212 to 240 °F (100 to 116 °C) are not FDA compliant.
- Prior to Intralox's development of the Series 1700, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- c. USDA Dairy acceptance requires the use of a clean-in-place system.
- d. Canada Food Inspection Agency
- e. Australian Quarantine Inspection Service
- f. Japan Ministry of Health, Labour, and Welfare
- g. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- h. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



	Flus	sh Grid	Nub Top™				
	in.	mm					
Pitch	1.50	38.1					
Minimum Width	5	127	-				
Width Increments	1.00	25.4					
Opening Sizes (approx.)	0.70 × 0.26	18 × 7					
Open Area	37	%					
Product Contact Area	89	8%					
Hinge Style	Clos	sed					
Drive Method	Center/Hin	Center/Hinge-Driven					
	4 81 4						

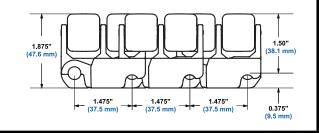
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with highly visible, orange acetal SLIDELOX® rod retention feature.
- Robust design offers excellent belt and sprocket durability, especially in tough material handling applications.
- Abrasion resistant system lasts 2.5 to 3 times longer than conventional modular plastic belts.
- Sprockets have large lug teeth.
- Multi-rod hinge design significantly reduces cam shafting. Every row contains two rectangular rods.
- Abrasion resistant nylon used in modules and rods.
- Ultra abrasion resistant polyurethane split sprockets.
- Steel is preferred carryway material.
- Chevron pattern or flat continuous carryway recommended. Straight, parallel wearstrips should not be used.
- Do not use on pusher conveyors.
- Minimum 2 inch (51 mm) indent from flush edge.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data												
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range uous) ^a	W	Belt Weight		Agency e, 2=Blu				=Grey
	0.25 × 0.17 in. (6.4 × 4.3 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
AR Nylon	Nylon	1800	2678	-50 to 212	-46 to 100	2.21	10.78	•					

- a. Sprocket temperatures should be limited to -40 to 160 °F (-40 to 70 °C). Belt used in temperature range of -212 to 240 °F (100 to 116 °C) are not FDA compliant.
 b. Prior to Intralox's development of the Series 1700, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- f. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.




	Trans	sverse R
	in.	mm
Pitch	1.475	37.5
Minimum Width	12	304.8
Width Increments	2.00	50.8
Min. Opening Size (approx.)	0.62 x 0.50	16 x 13
Max. Opening Size (approx.)	0.70 x 0.26	18 x 7
Open Area	26	%
Hinge Style	Clos	sed
Drive Method	Center/Hin	ige-Driven
D., ad., a4	Natas	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with SLIDELOX® rod retention feature.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Sprockets have large lug teeth.
- Ultra abrasion resistant polyurethane sprockets.
- Split sprockets are available.
- · Roller axles are stainless steel for durability and longlasting performance.
- Roller diameter is 0.95" (24.1 mm).
- Roller length is 0.825" (21 mm).
- Roller spacing is 1" (25.4 mm).
- Minimum return roller diameter is 6.0" (152.4 mm).

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

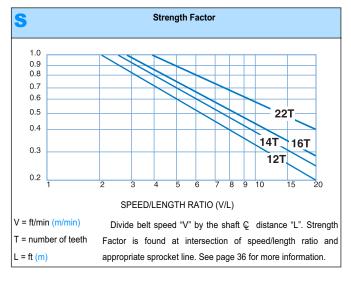
	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1			ceptabili 3=Natura	•	-Gre	y
	Ø 0.312 in. (7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	(USA)	USDA- FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	Jd	EU MC ^e
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	4.70	22.96	•					3	

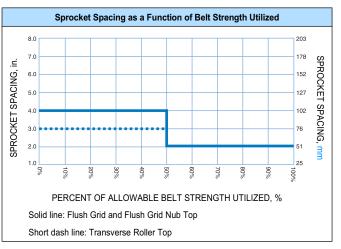
- USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agencyc. Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
 European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Sprocket	and Support Quanti	ity Reference Flush Grid and	d Flush Grid Nub Top™
Belt Wid	th Range ^a	Minimum Number of	V	Vearstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
5	127	2		
6	152	2		
7	178	3		
8	203	3		
9	229	3		
10	254	3		
12	305	3		
14	356	3		
15	381	3		
16	406	5		
18	457	5		
20	508	5	Straight, parallel wearstrips should not be used. Use chevron pattern or flat	Straight, parallel wearstrips should not be used. Use chevron pattern or flat continuous carryway
24	610	5	continuous carryway instead.	instead.
30	762	7		
32	813	7		
36	914	9		
42	1067	9		
48	1219	11		
54	1372	11		
60	1524	13		
72	1829	15		
84	2134	17		
96	2438	21		
120	3048	25		
144	3658	29		
		dd Number of Sprockets ^c at 02 mm) Ç Spacing	Maximum 6 in. (152 mm) ♀ Spacing	Maximum 12 in. (305 mm) Ç Spacing

- Belts are available in 1.00 in. (25.4 mm) increments beginning with 5 in. (127 mm). If the actual width is critical, consult Customer Service.

 These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

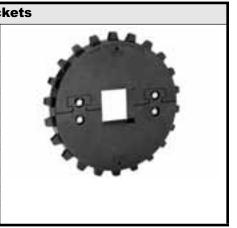

 The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.


Belt Widtl	h Range ^a	Minimum Number of	V	Wearstrips							
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway							
5	127	2	2	2							
6	152	2	2	2							
7	178	3	2	2							
8	203	3	2	2							
9	229	3	3	2							
10	254	3	3	2							
12	305	3	3	2							
14	356	3	3	3							
15	381	3	3	3							
16	406	5	3	3							
18	457	5	3	3							

				uantity Reference Transverse Roller Top [™]							
Belt Wid	Ith Range ^a	Minimum Number of	Wearstrips								
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway							
20	508	5	4	3							
24	610	5	4	3							
30	762	7	5	4							
32	813	7	5	4							
36	914	9	5	4							
42	1067	9	6	5							
48	1219	11	7	5							
54	1372	11	7	6							
60	1524	13	8	6							
72	1829	15	9	7							
84	2134	17	11	8							
96	2438	21	12	9							
120	3048	25	15	11							
144	3658	29	17	13							
		dd Number of Sprockets ^c at 02 mm) Ç Spacing	Maximum 6 in. (152 mm) Ç Spacing	Maximum 12 in. (305 mm) ♀ Spacing							

- a. Belts are available in 1.00 in. (25.4 mm) increments beginning with 5 in. (127 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.

					Ult	ra Abr	asion	Resist	ant Sp	rocke
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
12 (3.41%)	5.8	147	5.85	149	1.5	38		1.5		40
14 (2.51%)	6.7	170	6.80	173	1.5	38		1.5		40
16	7.7	196	7.74	197	1.5	38		1.5		40
(1.92%)								2.5		60
22 (1.02%)	10.5	267	10.59	269	1.5	38		2.5		



a. Contact customer Service for lead times.

a. Contact customer Service for lead times.

					Ultra	Abras	ion Re	sistan	t Split	Sproc
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round	Square	Round	Square
7 (00/011)							in.	in.	mm	mm
14	6.7	170	6.80	173	1.5	38		1.5		40
(2.51%)								2.5		60
16	7.7	196	7.74	197	1.5	38		1.5		40
(1.92%)								2.5		60
22	10.5	267	10.59	269	1.5	38		2.5		60
(1.02%)								3.5		

		Streamline Flights
Available F	light Height	Available Materials
in.	mm	Available Materials
4.0	102	
6.0	152	Nylon (AR)
NI - 4 NA::	: 0 0	:- (54)

Note: Minimum indent is 2.0 in (51 mm)

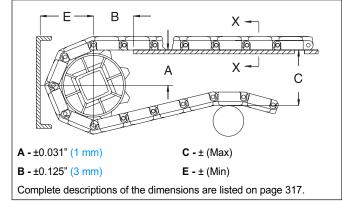
Note: Flights can be cut down to any height required for a particular

application.

Note: Flight is smooth (streamline) on both sides.

Note: Each flight rises out of the center of its supporting module,

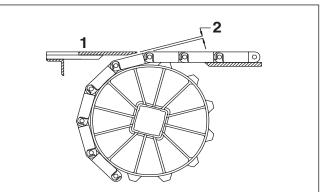
molded as an integral part. No fasteners are required.



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.


Spr	ocket De	scription	Α		E	3	(;		Ē
Pitch D	iameter	No. Teeth	Range (Botto	m to Top)	in.	mm	in.	mm	in.	mm
in.	mm	NO. Teetii	in.	mm	"".		111.	111111	111.	
			SERIES	1700 FLUSH	GRID					
5.8	147	12	2.36-2.46	60-62	2.42	61	5.67	144	3.27	83
6.7	170	14	2.85-2.93	72-74	2.63	67	6.61	168	3.74	95
7.7	196	16	3.33-3.40	85-86	2.81	71	7.56	192	4.22	107
10.5	267	22	4.78-4.83	121-123	3.30	84	10.41	264	5.64	143
		•	SERIES 1700	FLUSH GRI	D NUB	ГОР			•	
5.8	147	12	2.36-2.46	60-62	2.42	61	5.79	147	3.39	86
6.7	170	14	2.85-2.93	72-74	2.63	67	6.73	171	3.86	98
7.7	196	16	3.33-3.40	85-86	2.81	71	7.68	195	4.34	110
10.5	267	22	4.78-4.83	121-123	3.30	84	10.53	267	5.76	146
•			SERIES 1700 TI	RANSVERSE	ROLLE	R TOP	•		•	
5.8	147	12	2.42-2.52	61-64	2.36	60	6.92	176	4.46	113
6.7	170	14	2.91-3.00	74-76	2.56	65	7.87	200	4.93	125
7.7	196	16	3.40-3.47	86-88	2.73	69	8.81	224	5.41	137
10.5	267	22	4.84-4.90	123-124	3.20	81	11.67	296	6.83	173

Dead Plate Gap

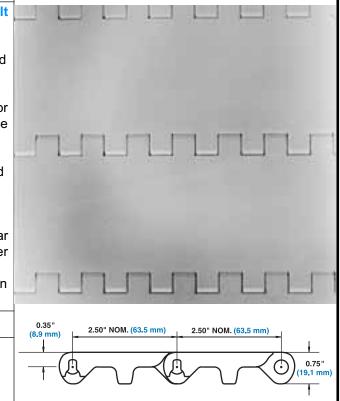
Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.


	Sprocket Descriptio	n	Gap			
Pitch D	iameter	No. Teeth	in.	mm		
in.	mm	No. reem		11111		
5.8	147	12	0.099	2.5		
6.7	170	14	0.085	2.2		
7.7	196	16	0.074	1.9		
10.5	267	22	0.054	1.4		

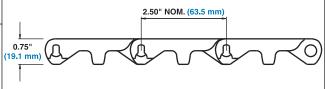
		Flat 1	Гор
	in.	mm	(9-7)
Pitch	2.50	63.5	
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	0%	6	
Hinge Style	Ор	en	
Drive Method	Center-	-driven	
Product	Notes		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth, closed upper surface with fully flush edges and recessed rods.
- Impact resistant belt designed for abusive applications.
- Easy retrofit from Series 800 without extensive conveyor frame changes for most meat industry applications since the A,B,C,E dimensions are within 1/4 in. (6 mm) of Series 800.
- Cam-link designed hinges expose more hinge and rod area as belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Drive Bar like Series 800 and Series 1600, the drive bar on the underside of Series 1800 Flat Top channels water and debris to the outside of the belt for easier, faster clean up. The drive bar's effectiveness has been proven both in-house and in field tests.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material Ø 0.312 in.	BS	Belt Strength	•	ure Range nuous)	W	Belt Weight	1=\	Agen White, 2=	icy Acce Blue, 3=		•	1=Gr	ey
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Polypropylene	Polypropylene	1200	1786	34 to 220	1 to 104	2.06	10.06	•	1			3		•
Polyethylene	Polyethylene	700	1042	-50 to 150	-46 to 66	2.23	10.90	•	3			3		•
Acetal	Polyethylene	1200	1786	-50 to 150	-46 to 66	3.36	16.40	•	1			3		•
Acetal	Polypropylene	1500	2232	34 to 200	1 to 93	3.36	16.40	•	1			3		•

- a. Prior to Intralox's development of the Series 1800, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- b. USDA Dairy acceptance requires the use of a clean-in-place system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- f. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

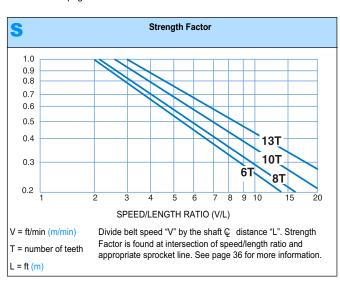

		Mesh	Top™
	in.	mm	1
Pitch	2.50	63.5	200
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Size (approximate)	0.07 × 0.75	1.7 × 19.1	
Open Area	32	2%	
Hinge Style	Op	en	d
Drive Method	Center	-driven	20
Product	Notos		-

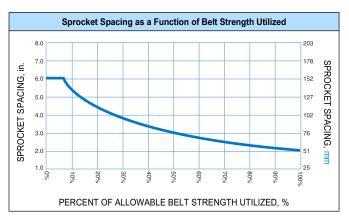
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Fully flush edges with recessed rods prevent edge damage and rod migration.
- Available with Flights and other Series 1800 accessories.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength		emperature Range (continuous) Belt Weight				Agency Acceptability ^a 1=White, 2=Blue, 3=Natural, 4=Grey					
	Ø 0.312 in. (7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.44	7.03	•				3		•
UV Resistant PP	Acetal	1100	1640	34 to 200	1 to 93	1.55	7.56							
UV Resistant Acetal	Acetal	1500	2230	-50 to 200	-46 to 93	2.27	11.08							
Polyethylene	Polyethylene	400	595	-50 to 150	-46 to 66	1.50	7.32	•				3		•

- a. Prior to Intralox's development of the Series 1800, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- USDA Dairy acceptance requires the use of a clean-in-place system.
- Canada Food Inspection Agency
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

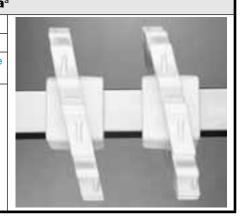



Belt Wid	h Range ^a Minimum Number of Sprockets Per Shaft ^b Sprockets Per Sh								
n.	mm	Sprockets Per Shaft ^b	Carryway	Returnway					
5	127	1	2	2					
6	152	2	2	2					
7	178	2	2	2					
8	203	2	2	2					
9	229	2	2	2					
10	254	2	3	2					
12	305	3	3	2					
14	356	3	3	3					
15	381	3	3	3					
16	406	3	3	3					
18	457	3	3	3					
20	508	3	4	3					
24	610	5	4	3					
30	762	5	5	4					
32	813	5	5	4					
36	914	7	5	4					
12	1067	7	6	5					
18	1219	9	7	5					
54	1372	9	7	6					
60	1524	11	8	6					
72	1829	13	9	7					
34	2134	15	11	8					
96	2438	17	12	9					

- If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with 5.0 in. (127 mm). If the actual width is critical, consult Customer Service.

 These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

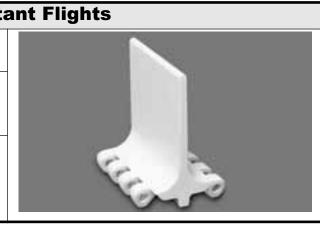
 The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset
- chart on page 304 for lock down location.



						EZ	Clean	Sprock	cet Da	taª	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s	_
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	2
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	
6 (13.40%)	5.0	127	4.6	117	1.5	38		1.5		40	
8 (7.61%)	6.5	165	6.2	157	1.5	38		1.5		40	
10 (4.89%)	8.1	206	7.8	198	1.5	38		1.5		40	3
13	10.5	267	10.3	262	1.5	38		1.5		40	
(2.91%)								2.5		60	1 - Pitch diameter
											2 - Outer diameter
											3 - Hub width

a. Contact Customer Service for lead times.

					A	ngled	EZ Cle	ean Sp	rocke	t Data
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	S
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
8 (7.61%)	6.5	165	6.2	157	2.0	50.8		1.5		40

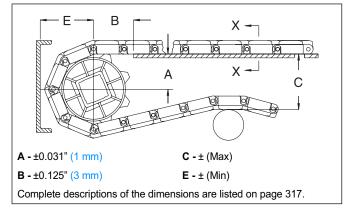


a. Contact Customer Service for lead times.

		Impact Resist
Available Fl	ight Height	Available Materials
in.	mm	Available Waterials
4.0	102	B
		Polypropylene, Polyethylene, Acetal
		, iootai

Note: Flights can be cut down to any height required for a particular application.

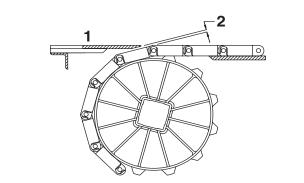
Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Spr	ocket De	scription	Α	В		(;	E		
Pitch Diameter No. Toot		No. Teeth	Range (Bottom to Top)		in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	"".		111.	mm	111.	mm
			SERIES 1800	MESH T	ОР			'		
5.0	127	6	1.77-2.10	45-53	1.87	47	4.95	126	2.91	74
6.5	165	8	2.62-2.87	66-73	2.23	57	6.48	165	3.68	93
8.1	206	10	3.45-3.65	88-93	2.59	66	8.04	204	4.46	113
10.5	267	13	4.67-4.82	119-123	3.02	77	10.40	264	5.64	143

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

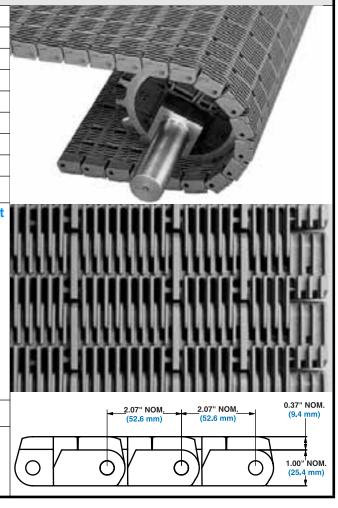
In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

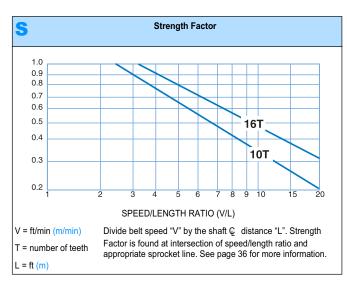
	Sprocket Descriptio	Ga	р	
Pitch D	iameter	No. Teeth	in.	mm
in.	mm	No. reeur		11111
5.0	127	6	0.150	3.8
6.5	165	8	0.108	2.8
8.1	206	10	0.091	2.3
10.5	267	13	0.074	1.9

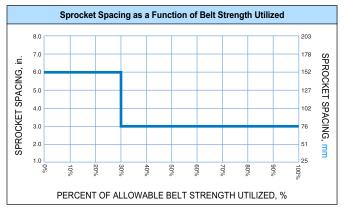


		Raise	d Rib
	in.	mm	F. 65
Pitch	2.07	52.6	45
Minimum Width	15	381	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	-	-	
Open Area	27	%	
Hinge Style	Clo	sed	
Drive Method	Center/Hir	nge-Driven	
Dag dag	4 Na4aa		

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Increased module thickness and rod diameter provides superior belt strength and increases belt life.
- Shuttleplug™ self-closing rod retention system.
- Split sprockets available for easy installation.
- Made of engineered resin for increased resistance to chemicals and temperature cycling.
- Minimal back tension required.
- More robust transfers utilize taller belt ribs and stronger fingers.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


	Belt Data													
Belt Material	Standard Rod Material 0.38 (9.7 mm)	BS	Belt Strength		ure Range nuous)	W	Belt Agency Acceptab Weight 1=White, 2=Blue, 3=Natu							
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^b	CFA ^c	A ^d	Je	Z ^f	EU MC ^g
Enduralox™ Polypropylene	Polypropylene	4000	5952	34 to 220	1 to 104	3.90	19.04	•						•
Polypropylene	Polypropylene	4000	5952	34 to 220	1 to 104	3.90	19.04	•						•

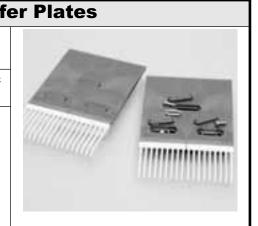

- a. Prior to Intralox's development of the Series 1900, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this literature, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- USDA Dairy acceptance requires the use of a clean-in-place system.
- c. Canada Food Inspection Agency
- d. Australian Quarantine Inspection Service
- e. Japan Ministry of Health, Labour, and Welfare
- f. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Sprocket a	nd Support Quantity Refere	ence
Belt Wid	dth Range ^a	Minimum Number of	V	Vearstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
15	381	3	3	3
18	457	3	3	3
24	610	5	4	3
30	762	5	5	4
36	914	7	5	4
42	1067	7	6	5
48	1219	9	7	5
54	1372	9	7	6
60	1524	11	8	6
72	1829	13	9	7
84	2134	15	11	8
96	2438	17	12	9
120	3048	21	15	11
144	3658	25	17	13
		dd Number of Sprockets ^c at 52 mm) Ç Spacing	Maximum 9 in. (229 mm) © Spacing	Maximum 12 in. (305 mm) Ç Spacing

- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. See Locked Sprocket Location chart in the Installation Instruction Guidelines or call Customer Service for lock down location.

						Met	al Spli	t Spro	cket D	ata		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	es		
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S. Sizes		Metric	Sizes		
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm		
10 (4.89%)	6.7	170	7.0	177	1.7	43		2.5		60		
15 (2.19%)	10.0	254	10.3	262	1.7	43		3.5				
16 (1.92%)	10.6	269	11.0	279	1.7	43	3.5	3.5		90		

	Т	wo-Mate	rial Finger Transf
Availabl	e Widths	Number of	Available Materials
in.	mm	Fingers	Available Waterials
6.0	152	18	Glass-Filled Thermoplastic Fingers, Acetal Backplate


Note: Plates provide high strength fingers combined with a low-friction back plate.

Note: Low-friction back plate is permanently attached to the two highstrength finger inserts.

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

Note: The extended back plate has three attachment slots. Mounting hardware includes stainless steel oval washers and bolts. Plastic bolt covers are also included.

	Dime	ensiona	I Requirements for Finger Transfer Plate Installation
	Two-N	laterial	Two-material glass handling finger transfer plate shown
	in.	mm	
F	3.50	89	H——¬
G	0.31	8	2.25" (57 mm)
Н	9.56	243	
I	5.91	150	
J	3.00	76	1.5"
К	1.45	37	(38 mm)
L	5.50	140	
Spacing at ambient temperature	Endura	lox™ PP	
	6.0	152.4	1 - SPACING 2 - 0.5" (13 mm) RADIUS (LEADING EDGE OF FRAME MEMBER) 3 - FRAME MEMBER

	Self-Clearing Finger											
Availab	e Width	Number of	Available Materials									
in.	mm	Fingers	Available Waterials									
6	152	18	Polyurethane									

Note: The Self-Clearing Finger Transfer System consists of a finger transfer plate and a transfer edge belt that are designed to work together. This system eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types. The Self-Clearing Finger Transfer System is ideal for warmer/cooler applications with frequent product changeovers and is compatible with any series and style of Intralox belt on the discharge and infeed conveyors. This system is bi-directional allowing the same transfer belt to be used for both left-hand and right-hand transfers.

Note: Self-Clearing Finger Transfer System is capable of transferring product to and from Intralox Series 400, Series 1200 and Series 1900 Raised Rib belts.

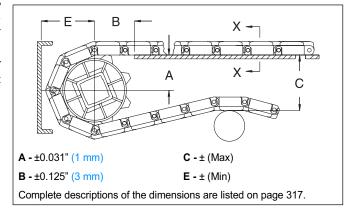
Transfer Plates

Note: Smooth, flat top surface provides excellent lateral movement of containers.

Note: Robust design for durability in tough glass applications.

Note: Finger Transfer Plates are easily installed and secured to mounting plates of any thickness with supplied stainless steel bolts and oval washers that allow movement with the belt's expansion and contraction.

Note: Self-Clearing Transfer Edge Belt is molded with robust tracking tabs for belt support in heavy side-loading conditions. It has fully flush edges, headed rod retention system and nylon rods for superior wear resistance.


Dimen	sional R	Requiren	nents for Self-Clearing Finger Transfer Plate Installations
	Self-C	learing	H 1.75° (45 mm)
	in.	mm	1.46° (37 mm)
F	5.25	133	
G	5.15	29	
Н	8.05	204	κ ΄ Ι΄ Ι΄ Ι΄ Ι΄ Ι΄
I	5.95	151	0.59" (15 mm)
J	2.92	74	G
К	1.51	38	
L	2.71	69	2
Spacing at ambie	ent tempera	ature	
PP	6.000 in.	152.4 mm	1 - Spacing
			2 - Frame Member

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Sprocket Description			Α	В		(E			
Pitch D	Diameter	No. Teeth	Range (Botto	ange (Bottom to Top)		mm	in.	mm	in.	100 100	
in.	mm	NO. IEEUI	in.	mm	in.				111.	mm	
	SERIES 1900										
6.7	170	10	2.69-2.85	68-72	2.82	72	7.08	180	4.29	109	
10.0	254	15	4.37-4.48	111-114	3.52	89	10.33	262	5.91	150	
10.6	269	16	4.71-4.81	120-122	3.65	93	11	279	6.25	159	

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

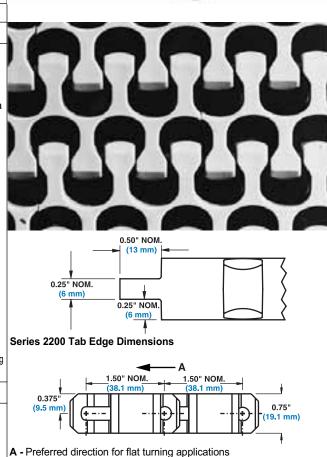
In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	n	Gap			
Pitch D	Diameter	No. Teeth	in.	mm		
in.	mm	- No. reetii	111.			
6.7	170	10	0.164	4.2		
10.0	254	15	0.109	2.8		
10.6	269	16	0.102	2.6		



		Radius Fl	ush Gri				
	in.	mm					
Pitch	1.50	38.1					
Minimum Width	5	127	40.00.7				
Width Increments	1.00	25.4					
Opening Size (approximate)	0.50 × 0.75	12.7 × 19.7					
Open Area	50)%					
Product Contact Area	37	7%					
Hinge Style	Op	pen					
Drive Method	Hinge-	Hinge-driven					
Produ	ct Notes						

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Flush edge or tab edge available.
- Designed for radius and low-tension capstan drive spiral applications with a minimum turning radius of 2.2 times belt width (measured from inside edge).
- · Lightweight, relatively strong belt with smooth surface grid.
- The Intralox Engineering Program will help predict the strength requirements of most radius and low-tension capstan drive spiral applications, insuring that the belt is strong enough for the application.
- · Belt openings pass straight through belt, making it easy to clean.
- Non sliding drive system for reduced belt and sprocket wear, and for low back-side tension.
- Tab edge belt width is measured exclusive of tabs. (Tabs extend approx. 0.5 in. (13 mm) × 0.25 in. (6 mm) thick on each side of belt, inside wearstrip.)
- Polyethylene and/or Tab edge belts are not recommended for low-tension capstan drive spiral applications.
- Maximum belt width in turns is 36 in. (914 mm)

WARNING: Personnel must not place their fingers in or on this belt. Fingers can get trapped in the openings of this belt, resulting in personal injury. This belt also has pinch points which result from the spreading and collapsing of the belt as it flexes to follow the conveyor path. These pinch points can trap fingers, hair or clothing, and can cause personal injury. Personnel should also be instructed not to wear loose fitting clothing, loose fitting gloves or hand/finger jewelry when working near this belt. Call Customer Service for tags, flyers and stickers containing this warning.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

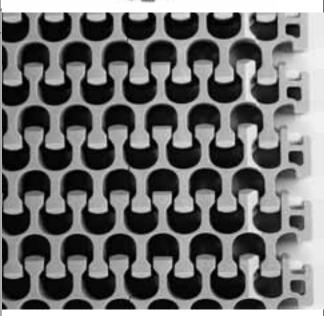
	Belt Data																
Belt Material	Standard Rod Material Ø 0.24 in.	BS	Straight Belt Strength		Curved Belt Strength Temperature Range (continuous)				Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey							
	(6.1 mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA-FSIS - Meat & Poultry	USDA Dairy ^a	CFA ^b	A ^c	J ^d	Z ^e	EU MC ^f
Polypropylene	Acetal	1600	2380	350	159	34 to 200	1 to 93	1.86	9.10	•	•	1	•	•	3	•	•
Polyethylene ^g	Acetal	1000	1490	200	91	-50 to 150	-46 to 66	1.96	9.56	•	•	3	•	•	3	•	•
Acetal	Nylon	2500	3720	350	159	-50 to 200	-46 to 93	2.82	13.80	•	•	3	•	•	3		•
Polypropylene	Polypropylene ^h	1400	2100	200	91	34 to 220	1 to 104	1.78	8.69	•	•	1	•	•	3		•

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service
- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- . Polyethylene cannot exceed 150 °F (66 °C
- h. Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

1.25" NOM.

(31.8 mm)

0.375" (9.5 mm)


	Radiu	s Flush G	rid High Deck
	in.	mm	
Pitch	1.50	38.1	PER PROPERTY
Minimum Width	6	152	
Width Increments	1.00	25.4	
Opening Size (approximate)	0.50 × 0.75	12.7 × 19.7	
Open Area	50	%	
Product Contact Area	37	′%	4.0
Hinge Style	Ор	en	19.0
Drive Method	Hinge-	-driven	
		·	

Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Flush Grid High Deck is 0.5 in. (12.7 mm) higher than the standard Series 2200 belt.
- Makes turns with an inside radius of 2.2 times the belt width.
- Flush Grid High Deck has more beam strength than the standard Series 2200 belt, which can reduce retrofit costs in spirals.
- Works with standard Series 2200 wearstrips.
- Standard indent for Flush Grid High Deck is 1.25 in. (31.8 mm) WARNING: Personnel must not place their fingers in or on this belt. Fingers can get trapped in the openings of this belt, resulting in personal injury. This belt also has pinch points which result from the spreading and collapsing of the belt as it flexes to follow the conveyor path. These pinch points can trap fingers, hair or clothing, and can cause personal injury. Personnel should also be instructed not to wear loose fitting clothing, loose fitting gloves or hand/finger jewelry when working near this belt. Call Customer Service for tags, flyers and stickers containing this warning.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

1.50" NOM.

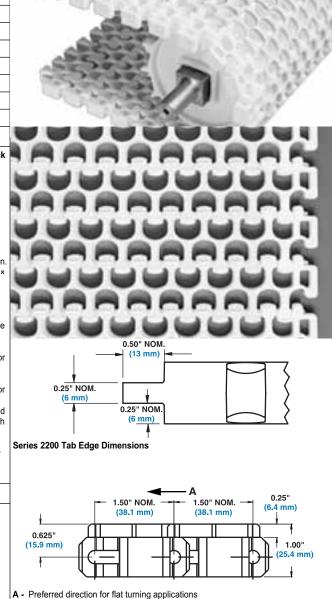
	Belt Data												
Belt Material	Standard Rod Material Ø 0.24 in.	BS	Straight Belt Strength ^a	Curve Strer	d Belt ngth ^b	Temperature Range (continuous) ^c		W	Belt Weight	Agency A 1=White, 2=E 4=	•	-	
	(6.1 mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jd	EU	
												MCe	
Acetal	Nylon	2500	3720	350	159	-50 to 200	-46 to 93	3.66	17.87	•	3	•	

0.75

1.50" NOM.

A -Preferred direction for flat turning applications

- a. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0 °F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- b. Published curved belt strengths and their method of calculation vary among spiral belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.
- c. Sideflexing applications should not exceed 180 °F (82 °C).
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.


		Radius Fricti	ion Top
	in.	mm	
Pitch	1.50	38.1	
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Size (approximate)	0.50 × 0.75	12.7 × 19.7	8
Open Area	50	0%	170
Hinge Style	Ор	en	.~
Drive Method	Hinge-	-driven	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Flush edge or tab edge available.
- Designed for radius and low-tension capstan drive spiral applications with a minimum turning radius of 2.2 times belt width (measured from inside edge).
- Indent is molded at 1.75 in. (44 mm
- The Intralox Engineering Program will help predict the strength requirements of most radius and low-tension capstan drive spiral applications, insuring that the belt is strong enough for the application.
- Belt openings pass straight through belt, making it easy to clean. Non sliding drive system for reduced belt and sprocket wear, and for low back-side tension.
- Tab edge belt width is measured exclusive of tabs. (Tabs extend approx. 0.5 in. (13 mm) × 0.25 in. (6 mm) thick on each side of belt, inside wearstrip.)
- Polyethylene and/or Tab edge belts are not recommended for low-tension capstan drive spiral applications.
- Maximum belt width in turns is 36 in. (914 mm)
- Dark grey rubber has a hardness of 64 Shore A. White rubber has a hardness of 55 Shore
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

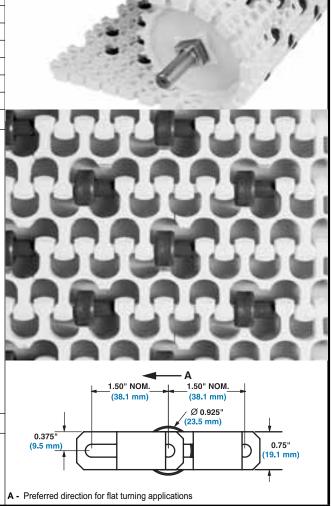
WARNING: Personnel must not place their fingers in or on this belt. Fingers can get trapped n the openings of this belt, resulting in personal injury. This belt also has pinch points which result from the spreading and collapsing of the belt as it flexes to follow the conveyor path. These pinch points can trap fingers, hair or clothing, and can cause personal injury.

Personnel should also be instructed not to wear loose fitting clothing, loose fitting gloves or hand/finger jewelry when working near this belt. Call Customer Service for tags, flyers and stickers containing this warning.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

					Belt	Data						
Belt Material	Standard Rod Material Ø 0.24 in.	BS	Straight Belt Strength	elt Strength (continuous) ^a		Weight 1:		1=White,	ency Acceptability I=White, 2=Blue, =Natural, 4=Grey			
	(6.1 mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jb	EU MC ^c
Polypropylene	Acetal	1600	2380	350	159	34 to 150	1 to 66	2.20	10.74	1		
Polyethylene ^d	Acetal	1000	1490	200	91	-50 to 120	-46 to 49	2.30	11.23	•		
Polypropylene	Polypropylene ^e	1400	2100	200	91	34 to 150	1 to 66	2.12	10.35	1		

- Sideflexing applications should not exceed 180 °F (82 °C)
- Japan Ministry of Health, Labour, and Welfare b.
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- Polyethylene cannot exceed 150 °F (66 °C)
- Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

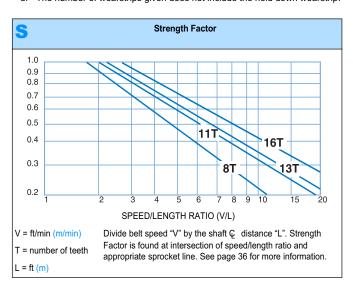


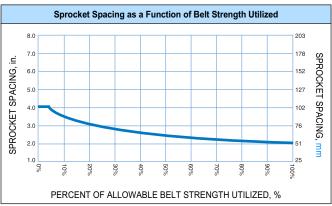
Radius Fl	ush Grid (2.6) v	vith Insert Rollers
in.	mm	
1.50	38.1	
7	178	
1.00	25.4	45
0.50 × 0.75	12.7 × 19.7	-5100
50	%	
Ор	en	-0.00
Hinge-	driven	-
	in. 1.50 7 1.00 0.50 × 0.75 50 Op	1.50 38.1 7 178 1.00 25.4

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- For applications where low back pressure accumulation is required.
- Flush edge or tabbed edge available.
- Standard roller spacings across belt width: staggered 4 in. (102 mm) or inline 2 in. (51 mm), 3 in. (76 mm), or 4 in. (102 mm).
- Standard roller spacings along belt length: staggered 1.5 in. (38.1 mm) or inline 3 in. (76.2 mm).
- Minimum 2.5 in. (63.5 mm) roller indent.
- Contact Customer Service for non-standard roller placement options.
- Sprockets must NOT be placed inline with rollers.
- For low back pressure applications, place wearstrip between rollers. For driven applications, place wearstrip directly under rollers.
- Back-up load is 5% to 10% of product weight.
- Tab edge belt width is measured exclusive of tabs. (Tabs extend approx. 0.5 in. (13 mm) × 0.25 in. (6 mm) thick on each side of belt, inside wearstrip.)
- Due to roller placement, the turning radius increases to 2.6. Belts 16 in. (406 mm) wide and less have a turn ratio of 2.2.
- Contact Sales Engineering before using a belt width greater than 24 in. (610 mm)

WARNING: Personnel must not place their fingers in or on this belt. Fingers can get trapped in the openings of this belt, resulting in personal injury. This belt also has pinch points which result from the spreading and collapsing of the belt as it flexes to follow the conveyor path. These pinch points can trap fingers, hair or clothing, and can cause personal injury. Personnel should also be instructed not to wear loose fitting clothing, loose fitting gloves or hand/finger jewelry when working near this belt. Call Customer Service for tags, flyers and stickers containing this warning.

- · See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


								Belt	Data	ı								
Belt Material	Standard Rod Material	BS		Str	aight Be	elt Stren	gth	Roller Indents		Curved Belt Strength		Temperature Range ^a (continuous		W	Belt Weight		ite, 2=E	llue,
	Ø 0.24 in. (6.1 mm)		Ro	ller Wid	th Spaci	ing						,				3=Natural, 4=Grey		
		2 in.	51 mm	3 in.	7.6 mm	4 in.	102 mm											
		lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	in.	mm	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jb	EU MC ^c
Polypropylene	Acetal	400	600	710	1060	900	1340	2.5	64	260	120	34 to 200	1 to 93	1.86	9.08	•	3	•
								3.5 to 4.5	89 to 114	350	160							
Acetal	Nylon	630	940	1110	1650	1410	2100	2.5	64	260	120	-50 to 200	-46 to 93	2.82	13.8	•	3	•
								3.5 to 4.5	89 to 114	350	160							
Polypropylene	Polypropylene ^d	350	520	620	920	790	1180	2.5	64	150	70	34 to 220	1 to 104	1.78	8.69	•	3	•
								3.5 to 4.5	89 to 114	200	90							


- a. Sideflexing applications should not exceed 180 °F (82 °C).
- b. Japan Ministry of Health, Labour, and Welfare
- c. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- d. Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

Belt Wid	th Range ^b	Minimum Number of	,	Wearstrips ^d
n.	mm	Sprockets Per Shaft ^c	Carryway	Returnway
5	127	2	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	3	3	2
12	305	3	3	2
14	356	5	3	3
15	381	5	3	3
16	406	5	3	3
18	457	5	3	3
20	508	5	4	3
24	610	7	4	3
30	762	9	5	4
32	813	9	5	4
36	914	9	5	4
12	1067	11	6	5
18	1219	13	7	5
54	1372	15	7	6
60	1524	15	8	6
'2	1829	19	9	7
34	2134	21	11	8
96	2438	25	12	9
20	3048	31	15	11
44	3658	37	17	13

- . For low-tension capstan drive spirals contact Technical Support Group for suggested carryway support recommendations.
- b. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 5 in. (127 mm). If the actual width is critical, consult Customer Service. Intralox does not recommend turning belts wider than 36 in. (914 mm). For turning applications that require wider belts, contact Intralox Sales Engineering.
- c. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications (sprockets should be placed every inch for heavily loaded applications). See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.
- d. The number of wearstrips given does not include the hold down wearstrip.

Sprocket Data ^a											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)		mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	
8 (7.61%)	3.9	99	4.0	102	1.0	25		1.5		40	
13 (2.91%)	6.3	160	64	163	1.0	25		2.5		60	
16	7.7	196	7.8	198	1.0	25		1.5		40	
(1.92%)								2.5		60	

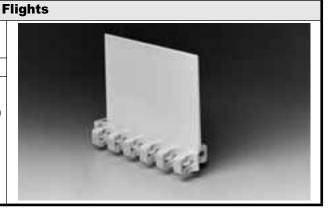
a. Contact Customer Service for lead times.

						EZ	Clean	Sproc	ket Da	taª		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Д	Available Bore Sizes				
Teeth	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes		
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	in.	mm	Round in.	Square in.	Round mm	Square mm		
11 (4.05%)	5.3	135	5.4	137	1.0	25		1.5		40		
13 (2.91%)	6.3	160	6.4	163	1.0	25		1.5		40		

a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120°F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.

						5	plit Sp	orocke	t Data	а
No. of	Nom.	Nom.	Nom.	Nom. Nom. Nom. Available Bore Size			Bore Size	es		
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S. Sizes		Metric	Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
13 (2.91%)	6.3	160	6.4	163	1.5	38	1-7/16 ^b	1.5		

- a. Contact Customer Service for lead times.b. Tight fit round bore.

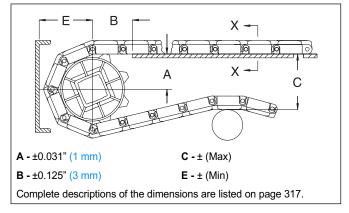

Streamline		
Available Materials	light Height	Available F
Available Waterlass	mm	in.
Polypropylene, Polyethylene	102	4
-		

Note: Flights can be cut down to any height required for a particular

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flights can be provided in linear increments of 1.5 in. (38 mm).

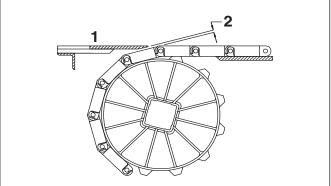
Note: The standard indent is 5/8 in. (15.9 mm).


SERIES 2200

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.


S	procket Des	cription	А		E	3	(С		E
Pitch D	Diameter	No. Teeth	Range (Bottom	n to Top)	in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	111.	mm	III.	mm	"".	111111
			SERIE	S 2200 FLUSH (SRID					
3.9	99	8	1.44	37	1.93	49	3.92	100	2.40	61
5.3	135	11	2.18	55	2.27	58	5.32	135	3.10	79
6.3	160	13	2.67	68	2.52	64	6.27	159	3.57	91
7.7	196	16	3.40	86	2.78	71	7.69	195	4.28	109
			SERIES	S 2200 FRICTION	ТОР					
3.9	99	8	1.44-1.58	36-40	1.93	49	4.17	106	2.65	67
5.3	135	11	2.18-2.29	55-58	2.27	58	5.57	142	3.35	85
6.3	160	13	2.67-2.76	68-70	2.52	64	6.52	166	3.82	97
7.7	196	16	3.40-3.47	86-88	2.78	71	7.94	202	4.53	115
			SERIES 2200 FLUS	SH GRID WITH IN	SERT RO	LLERS				
3.9	99	8	1.44-1.58	36-40	1.93	49	4.00	102	2.48	63
5.3	135	11	2.18-2.29	55-58	2.27	58	5.42	138	3.19	81
6.3	160	13	2.67-2.76	68-70	2.52	64	6.36	162	3.66	93
7.7	196	16	3.40-3.47	86-88	2.78	71	7.78	198	4.37	111
			SERIES 220	0 FLUSH GRID H	IIGH DECK				•	
3.9	99	8	1.44-1.58	36-40	1.93	49	4.42	112	2.90	74
5.3	135	11	2.18-2.29	55-58	2.27	58	5.82	148	3.60	91
6.3	160	13	2.67-2.76	68-70	2.52	64	6.77	172	4.07	103
7.7	196	16	3.40-3.47	86-88	2.78	71	8.19	208	4.78	121

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

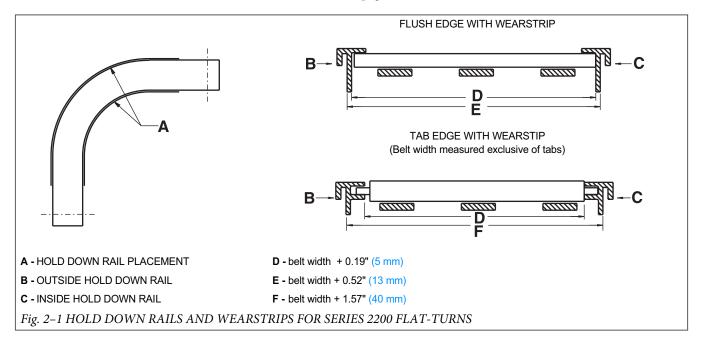
In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descripti	Gap					
Pitch	Diameter	No. Teeth	in.	mm			
in.	mm	No. reem		mm			
3.9	99	8	0.150	3.8			
5.3	135	11	0.108	2.8			
6.3	160	13	0.091	2.3			
7.7	196	16	0.074	1.9			



HOLD DOWN RAILS AND WEARSTRIPS

Intralox recommends using continuous hold down rails through an entire turn, starting at a distance of 1X the belt width before the turn and ending 1X the belt width after the turn. This applies to both carryway and returnway. The use of

hold down rails along both side of the belt over the full carryway is recommended but not mandatory.

Series 2200 is available with and without an edge tab. A wearstrip style is available for each edge style. The tab edge design allows the belt to be held down without the wearstrip interfering with the carryway surface. See "Custom wearstrips" (page 310).

BELT SELECTION INSTRUCTIONS

ENGINEERING PROGRAM ANALYSIS FOR SERIES 2200

Intralox Customer Service Technical Support Group can calculate the estimated belt pull for radius applications using **Series 2200**. The following information is required (refer to "*Radius belt data sheet*" (page 361)):

- Any environmental conditions which may affect the friction coefficient (for dirty or abrasive conditions, use higher friction coefficients than normal)
- Belt width
- Length of each straight run
- Turning angle of each turn

- Turn direction of each turn
- Inside turning radius of each turn
- Carryway/hold down rail material
- Product loading lb/ft² (kg/m²)
- Product back-up conditions
- Belt speed
- Elevation changes on each section
- Operating temperatures.

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. The Engineering Program should be run to insure that the belt is strong enough for the radius application in question.

intralox.

SERIES 2200 DESIGN GUIDE SUMMARY

For more information, see the *Installation, Maintenance and Toubleshooting manual* available from Intralox.

- A The minimum and recommended turning radius for **Series 2200** is 2.2 times the belt width, measured from the inside edge.
- B The minimum straight run required between turns of opposing direction is 2.0 times the belt width. Shorter straight sections will lead to high wear on the edge guide rail and high pull stresses in the helt
- **C** There is no minimum straight run required between turns that are in the same direction.
- D The minimum length for the final straight run (leading into the drive shaft) is 1.5 times the belt width. Shorter lengths may lead to sprocket wear or tracking problems. For narrow belts, a weighted take-up may be required since proper catenary cannot be achieved therefore, a 5 ft. (1.50 m) minimum final straight run is recommended. See "Special Take-Up Arrangements" (page 324).

E - The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller may be used in place of sprockets.

SERIES 2200

- F IDLE SHAFT
- G 1ST TURN
- H BELT WIDTH
- I BELT TRAVEL
- J 2ND TURN
- K DRIVE MOTOR
- L DRIVE SHAFT

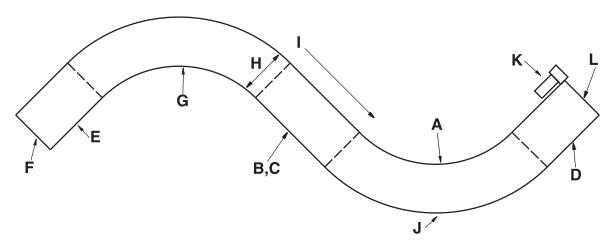
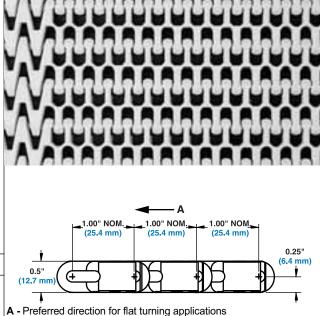



Fig. 2-2 TYPICAL 2-TURN RADIUS LAYOUT

See "Belt selection process" (page 5) See "Standard belt materials" (page 18) See "Friction factors" (page 31)

modules is 2.625 in. (66.7 mm).

the outside for improved strength.

(measured from inside edge).

(457 mm) in spiral and flat turning applications.

from the right side belt edge with tight turning modules is 2.875 in. (73 mm). Minimum sprocket indent from the left side belt edge with tight turning

Belts can be ordered with 1.7 modules on the inside and 2.2 modules on

Belts over 18 in. (457 mm) will have a turn radius of 2.2 times the belt width

Additional Information

Contact sales engineering before using a belt width greater than 18 in.

	Belt Data															
Belt Material Standard Rod Material Ø 0.18 in. (4.57 mm)	BS		Curved Belt Strength ^a lb (kg) Belt Widths						Temperati (contin	W		Agency Acceptability ^c 1=White, 2=Blue,				
	Straight Belt Strength		12 in.	305 mm	18 in.	457 mm	24 in.	610 mm			Belt V	Veight	3=Natural, 4=Grey			
		lb/ft	kg/m	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^d	EU MC ^e
Polypropylene	Acetal	600	892.8	122	55	140	64	157	71	34 to 200	1 to 93	1.20	5.86	•	3	•
Acetal	Nylon	600	892.8	162	73	179	81	195	88	-50 to 200	-46 to 93	1.73	8.44	•	3	•
Polypropylene	Polypropylene ^f	600	892.8	80	36	91	41	102	46	34 to 220	1 to 104	1.12	5.47	•	3	•

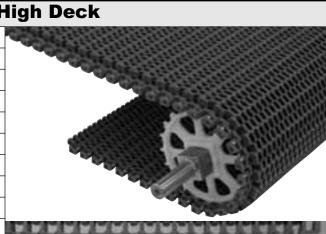
- The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.
- Sideflexing applications should not exceed 180 °F (82
- Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- d. Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

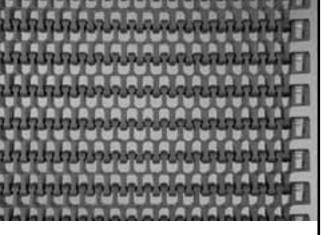
	Turi	ning Radius F	lush Grid (2.2)
	in.	mm	A.
Pitch	1.00	25.4	
Minimum Width	4	102	
Width Increments	0.50	12.7	
Opening Size (approximate)	0.35 × 0.30	8.9 × 7.6	
Open Area	42	%	
Product Contact Area	23	%	
Hinge Style	Ор	en	STREET, OF CHANGE
Drive Method	Hinge-		
Proc	luct Notes		
status before designing a conveyor of the provided provided provided provided program at the pell with hold down guide, see part the minimum nosebar diameter is 1.5 in (34.9 mm) without hold down guides. The minimum nosebar diameter is 1.5 in (34.9 mm) without hold down guides. The Intralox Engineering Program will have radius and low-tension capstan drive spenough for the application. Belt openings pass straight through beless procket drive system is designed to material the process of the system is designed to material process. Radius belt wearstrips are available. Contact Sales Engineering before using turning or spiral applications.	pstan drive spiral applications in (measured from inside edge) ge 261 for details. n. (38.1 mm) with hold down go elp predict the strength requiring applications, insuring that it, making it easy to clean. inimize wear and requires very		
Addition	al Information		
 See "Belt selection process" (page 5) See "Standard belt materials" (page 18 See "Special application belt materials" See "Friction factors" (page 31) 		(6.4 mm) (25.4 mm) (25.4 mm) (25.4 mm) (13 mm)	

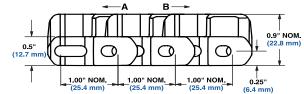
	Belt Data																	
Belt Material	BS		С	urved		rength Vidths	ı ^a lb (k	g)	Temperature Range (continuous) ^b		W		Agency Acceptability ^c 1=White, 2=Blue, 3=Natural 4=Grev					
(4.57 mn		Straigl Stre		12 in.	305 mm	18 in.	457 mm	24 in.	610 mm			Belt V	Veight					
		lb/ft	kg/m	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^d		J ^f	EU MC ^g
Polypropylene	Acetal	1200	1785	175	80	200	91	225	102	34 to 200	1 to 93	1.10	5.40	•	•	•	3	•
Acetal	Nylon	1700	2528	250	114	280	127	300	136	-50 to 200	-46 to 93	1.63	7.86	•	•	•	3	•
Polypropylene	Polypropylene ^h	1000	1487	114	52	130	59	146	67	34 to 220	1 to 104	1.04	5.11	•	•	•	3	•

A - Preferred direction for flat turning applications **B** - Preferred direction for high speed applications

- a. The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.
- Sideflexing applications should not exceed 180 °F (82 °C).


 Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- USDA Dairy acceptance requires the use of a clean-in-place system.
- Australian Quarantine Inspection Service
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.



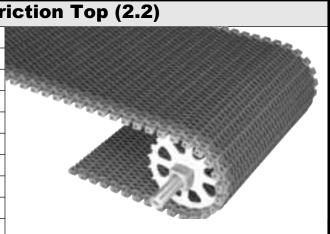

	Flus	h Grid F			
	in.	mm			
Pitch	1.00	25.4			
Minimum Width	4	102			
Width Increments	0.50	12.7			
Opening Size (approximate)	0.35 × 0.30	8.9 × 7.6			
Open Area	42%				
Product Contact Area	23	%			
Hinge Style	Ор	en			
Drive Method	Hinge-	driven			

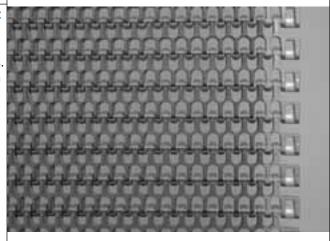
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Flush Grid High Deck is 0.4 in. (10 mm) higher than the standard Series 2400 belt.
- Makes turns with an inside radius of 2.2 times the belt width.
- Flush Grid High Deck has more beam strength than the standard Series 2400 belt, which can reduce retrofit costs in spirals.
- Works with standard Series 2400 wearstrips.
- Standard indent for Flush Grid High Deck is 0.875 in. (22 mm).

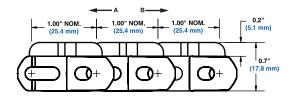
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

- A -Preferred direction for flat turning applications
- B -Preferred direction for high speed applications

	Belt Data																	
Belt Material Standard Rod Material				С	urved		trength Vidths	a lb (k	g)	Temperati (contin	W		Agency Acceptability ^c 1=White, 2=Blue, 3=Natural, 4=Grey					
	Ø 0.18 in. (4.57 mm)		ht Belt ngth	12 in.	305 mm	18 in.	457 mm	24 in.	610 mm			Belt V	Veight	4-Siey				
		lb/ft	kg/m	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft²	kg/m²		USDA Dairy ^d		J ^f	EU MC ^g
Polypropylene	Acetal	1200	1786	175	80	200	91	225	102	34 to 200	1 to 93	1.90	9.28	•	•	•	3	•
Acetal	Acetal	1700	2530	250	114	280	127	300	136	-50 to 200	-46 to 93	3.04	14.84	•	•	•	3	•

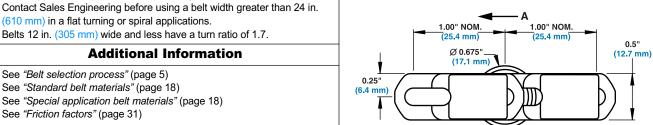

- a. The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.
- b. Sideflexing applications should not exceed 180 °F (82 °C
- c. Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- d. USDA Dairy acceptance requires the use of a clean-in-place system.
- e. Australian Quarantine Inspection Service
- f. Japan Ministry of Health, Labour, and Welfare
- g. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.




Т	urning R	adius Fr
	in.	mm
Pitch	1.00	25.4
Minimum Width	4	102
Width Increments	0.50	12.7
Opening Size (approximate)	0.35 × 0.30	8.9 × 7.6
Open Area	42	%
Product Contact Area	23	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
B 1 4	N 4	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Available with hold down guide, see page 261 for details.
- The minimum nosebar diameter is 1.5 in. (38.1 mm) with hold down guides and 1.375 in. (34.9 mm) without hold down guides.
- Radius belt wearstrips are available.
- Grey rubber has a hardness of 64 Shore A.
- White rubber has a hardness of 55 Shore A.
- Contact Sales Engineering before using a belt width greater than 36 in. (914 mm) in a flat turning or spiral applications.
- Indent for friction surface is molded at 1.125" (28.6mm).
- Temperature, environmental conditions and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


- A -Preferred direction for flat turning applications
- **B** -Preferred direction for high speed applications

	Belt Data																
Belt Material	Standard Rod Material Ø 0.18 in.	BS		Curved Belt Strength ^a lb (kg) Belt Widths						Temperature Range (continuous)		W		Agency Acceptability ^b 1=White, 2=Blue,			
	(4.57 mm)		ht Belt ngth	12 in.	305 mm	18 in.	457 mm	24 in.	610 mm			Belt Weight		3=Natural, 4=Grey			
		lb/ft	kg/m	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jc	EU MC ^d	
Polypropylene	Acetal	1200	1785	175	80	200	91	225	102	34 to 150	1 to 66	1.35	6.59	1			
Polypropylene	Polypropylene ^e	1000	1487	114	52	130	59	146	67	34 to 150	1 to 66	1.29	6.30	1			

- i. The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.
- b. Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- c. Japan Ministry of Health, Labour, and Welfare
- d. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- e. Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

Tie	ht Turning Bodi	us Elush Gr	d (2 4) with	th Incort Ballor
iig	ht Turning Radi		a (2.4) Wi	in insert kollei
	in.	mm		
Pitch	1.00	25.4	CONTRACTOR CONTRACTOR	
Minimum Width	9	229		
Width Increments	1.00	25.4		建造成 (4) 下
Opening Size (approximate)	0.35 × 0.30	8.9 × 7.6	A	
Open Area	429	%	200	
Product Contact Area	23%	%	1000	
Hinge Style	Оре	en	100	A STATE OF THE PARTY OF THE PAR
Drive Method	Hinge-c	Iriven		-0.04
Produ	ct Notes		$\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}$	\cdots
Always check with Customer Se	rvice for precise belt v	vidth		997 998

A - Preferred direction for flat turning applications

104

220

							Belt	Da	ta									
Belt Material Standard Ro		BS				/ed Be	elt Str		lb (kg	• •		Tempe Ran		W			ency	
	Ø 0.18 in.			Roller Indents		Belt Widths						(continu				Acceptability ^c 1=White, 2=Blue,		
	(4.57 mm)		ht Belt ngth			12 in.	305 mm	18 in.	457 mm	24 in.	610 mm	(COTILITI	uou3)	Belt Weight		3=Natural, 4=G		,
		lb/ft	kg/m	in.	mm	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^d	EU MC ^e
Polypropylene	Acetal	500	744	3.5 or 4.0	89 or 102	122	55	140	64	157	71	34 to 200	1 to 93	1.20	5.86	•	3	•
Acetal	Nylon	500	744	3.5 or 4.0	89 or 102	162	73	179	81	195	88	-50 to 200	-46 to 93	1.73	8.44	•	3	•
Polypropylene	Polypropylene	500	744	3.5 or	89 or	80	36	91	41	102	46	34 to	1 to	1.12	5.47	•	3	•

102 The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.

4.0

- Sideflexing applications should not exceed 180 °F (82
- Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

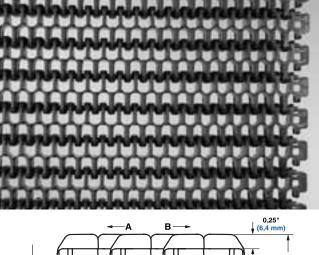
	Turning Radio	us Flush Grid	(2.8) with Insert Rollers
	in.	mm	
Pitch	1.00	25.4	
Minimum Width	6	152	
Width Increments	1.00	25.4	
Opening Size (approximate)	0.35 × 0.30	8.9 × 7.6	
Open Area	42	%	
Product Contact Area	23	%	
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	
Prod	luct Notes		-mg1/
Standard Roller Width Spacings: 2 in. (5 Standard Roller Row Spacings: 2 in. (5 Roller Indents: 2 in. (51 mm), 2.5 in. (63 roller width spacing selected. Minimum width with Hold Down Guides Minimum roller indent with Hold Down Cosprockets must NOT be placed in line were For low back pressure applications, plac applications, place wearstrip directly une Contact Sales Engineering before using turning or spiral applications.	1 mm) or 4 in. (102 mm). 3 mm), 3 in. (76 mm) or 3.5 in. is 8 in. (203 mm). Guides is 3 in. (76 mm). with rollers. ce wearstrip between rollers. If	(89 mm) based on	
Addition	al Information		← A
 See "Belt selection process" (page 5) See "Standard belt materials" (page 18) See "Special application belt materials" See "Friction factors" (page 31) 			0.25"

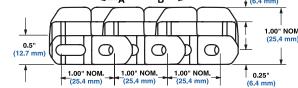
									Ве	It Da	ta											
Belt Material	Standard Rod Material	BS		It Strength					ller ents	(Curved	Belt Str	ength	lb (kg)		Temperature Range		W		Agency Acceptability ^c		
	Ø 0.18 in. (4.57 mm)	Straig		Strengt Ier Widt		ing				Belt Widths						(contir	iuous) ^b	Belt Weight		1=White, 2=Blue, 3=Natural, 4=Grey		
		2 in.	51 mm	3 in.	76 mm	4 in.	102 mm			12 in.	305 mm	18 in.	457 mm	24 in.	610 mm							
		lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	in.	mm	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft²	kg/ m²	FDA (USA)	Jd	EU MC ^e
Polypropylene	Acetal	700	1040	800	1190	900	1340	2	51	130	60	150	65	165	75	34 to	1 to	1.21	1.21	•	3	
								2.5 to 3.5	64 to 89	175	80	200	91	225	102	200	93					
Acetal	Nylon	1000	1490	1200	1780	1300	1940	2	51	185	85	210	95	225	100	-50 to	-46 to	1.61	7.68	•	3	•
								2.5 to 3.5	64 to 89	250	114	280	127	300	136	200	93					
Polypropylene	Polypropylene	600	890	700	1040	800	1190	2	51	85	35	95	40	105	50	34 to	1 to	1.04	5.11	•	3	•
								2.5 to 3.5	64 to 89	114	52	130	59	146	67	220	104					

A - Preferred direction for flat turning applications

- a. The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.
- b. Sideflexing applications should not exceed 180 °F (82 °C).
- Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Raised
	in.	mm
Pitch	1.00	25.4
Minimum Width	4	102
Width Increments	0.50	12.7
Opening Size (approximate)	0.35 × 0.30	8.9 × 7.6
Open Area	42	2%
Product Contact Area	18	3%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Produc	t Notes	


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Raised Rib belt deck is 0.5 inch (12.7 mm) higher than the standard Series 2400 belt.
- Makes turns with an inside turning radius of 2.2 times the belt
- Facilitates smooth transfers of small packages with the addition of transfer plates.
- Raised Rib style permits ample airflow through the belt for cooling in food processing applications.
- Raised Rib deck has more beam strength than the standard Series 2400 belt, which can reduce retrofit costs in spirals.
- Works with standard Series 2400 wearstrips.
- Standard indent for Raised Rib belt deck is 1.12 inches (28.6 mm).


Additional Information

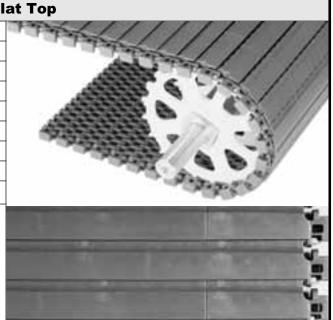
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

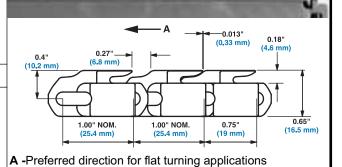
Rib

- A -Preferred direction for flat turning applications
- B -Preferred direction for high speed applications

	Belt Data															
Belt Material	Standard Rod Material Ø 0.18 in.	BS		С	urved		trength Vidths	a lb (k	g)		Temperature Range (continuous) ^b			Agency Acceptability ^c 1=White, 2=Blue, 3=Natural, 4=Grey		
	(4.57 mm)		ht Belt ngth	12 in.	305 mm	18 in.	457 mm	24 in.	610 mm			Belt V	Veight			
		lb/ft	kg/m	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jq	EU MC ^e
Polypropylene	Acetal	1200	1785	175	80	200	91	225	102	34 to 200	1 to 93	1.98	9.68	•	3	•
Acetal	Nylon	1700	2528	250	114	280	127	300	136	-50 to 200	-46 to 93	3.00	14.67	•	3	•
Polypropylene	Polypropylene ^f	1000	1487	114	52	130	59	146	67	34 to 220	1 to 104	1.92	9.39	•	3	•

- The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.
- Sideflexing applications should not exceed 180 °F
- Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

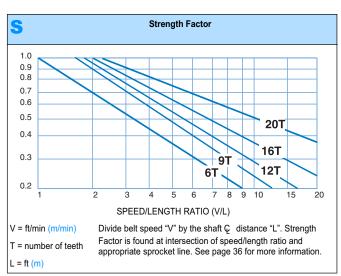

		Radius Fl
	in.	mm
Pitch	1.00	25.4
Minimum Width	6	152
Width Increments	0.50	12.7
Open Area	0	%
Product Contact Area	66	6%
Hinge Style	Op	en
Drive Method	Hinge	-driven
Drodu	ot Notos	

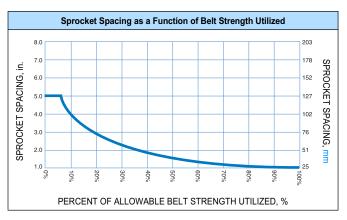

Product Notes

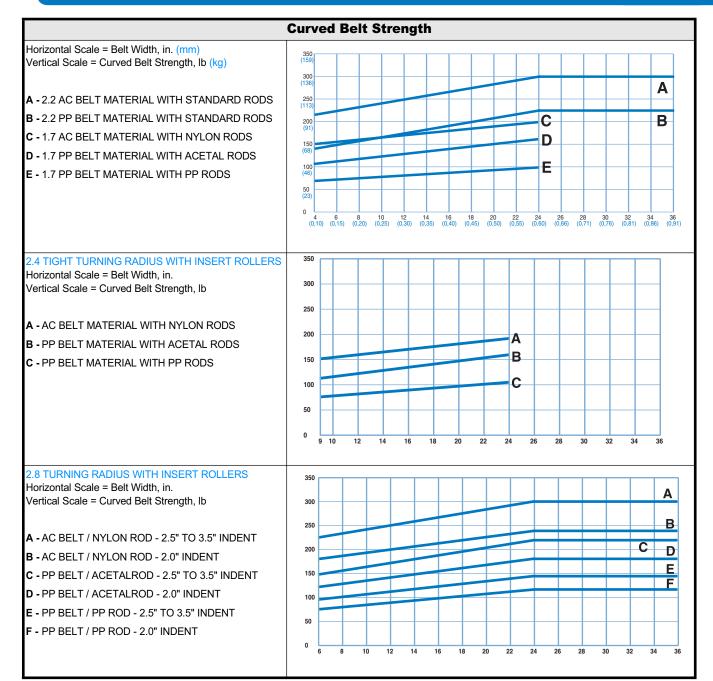
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Minimum nosebar diameter is 1.375 in. (34.9 mm).
- The Intralox Engineering Program will help predict strength requirements of most radius applications, ensuring the belt is strong enough for the application.
- Sprocket drive system is designed to minimize wear and requires very low returnside tension.
- · Radius belt wearstrips are available.
- Contact Sales Engineering before using a belt width greater than 36 in. (914 mm).
- Patented belt design provides more support for sensitive products in a flat turning application.
- Flat, closed surface successfully conveys small products that would fall through belts with open area.
- Makes turns with an inside turning radius of 2.2 times the belt width.

Additional Information

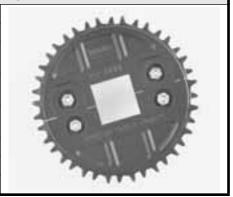
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)


							В	elt I	Data							
Belt Material	Standard Rod Material Ø 0.18 in.	BS		С	urved		rength Vidths	a lb (k	g)	Temperati (contin	ure Range uous) ^b	W		Agency Acceptabili 1=White, 2=Blue 3=Natural, 4=Gre		lue,
	(4.57 mm)		ht Belt ngth	12 in.	305 mm	18 in.	457 mm	24 in.	610 mm					5-Natural, 4-Grey		
		lb/ft	kg/m	lb	kg	lb	kg	lb	kg	°F	°C	lb/ft² kg/m²		FDA (USA)	J ^d	EU MC ^e
Acetal	Nylon	1700	2528	250	114	280	127	300	136	-50 to 200	-46 to 93	2.24	11.00	•	3	•


- a. The Curved Belt Strength is different for each belt width. Contact Intralox Sales Engineering for assistance with analysis.
- b. Sideflexing applications should not exceed 180 °F (82 °C).
- c. Prior to Intralox's development of Series 2400, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.


Belt Wid	lth Range ^b	Minimum Number of	,	Wearstrips ^d
in.	mm	Sprockets Per Shaft ^c	Carryway	Returnway
4	102	1	2	2
5	127	2	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
15	381	5	3	3
16	406	5	3	3
18	457	5	3	3
20	508	5	4	3
24	610	5	4	3
30	762	7	5	4
32	813	7	5	4
36	914	7	5	4
42	1067	9	6	5
48	1219	11	7	5

- a. For low-tension capstan drive spirals contact Technical Support Group for suggested carryway support recommendations.
- b. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.50 in. (12.7 mm) increments beginning with minimum width of 4 in. (102 mm). If the actual width is critical, consult Customer Service.
- c. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.
- d. The number of wearstrips given does not include the hold down wearstrip.

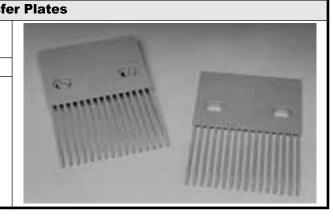


							Spro	cket D	ataª	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	s
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in. ^b	Square in.	Round mm ^b	Square mm
6 ^c (13.40%)	2.0	51	2.0	51	.54	14	3/4		20	
9 ^c (6.03%)	2.9	74	2.9	74	1.0	25	1	1	25	25
12 (3.41%)	3.9	99	4.0	102	1.0	25	1 to 1-1/2	1.5	25 to 40	40
16 (1.92%)	5.1	130	5.2	132	1.0	25	1 to 1-1/2	1.5	25 to 40	40
20 (1.23%)	6.4	163	6.4	163	1.0	25	1 to 1-1/2	1.5	25 to 40	40

- a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0 °F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
- c. The 2.0 in. (51 mm) Pitch Diameter 6 tooth sprocket and the 2.9 in. (74 mm) Pitch Diameter 9 tooth sprocket have a recommended belt pull of 60 lb/sprocket (27 kg/sprocket). Do not use this sprocket with Hold Down Guides.

	Ultra Abrasion Resistant Polyurethane Split												
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available I		Bore Size	s			
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes			
Action)	Dia. iii.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm			
16 (1.92%)	5.1	130	5.2	132	1.0	25		1.5 ^b		40 ^b			
20 (1.23%)	6.4	163	6.4	163	1.0	25		1.5		40			

Sprockets^a

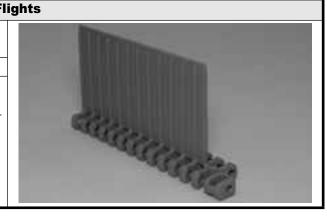

- a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0 °F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
- b. FDA approved sprockets are available.

			Finger Transf
Available	e Widths	Number of	Available Materials
in.	mm	Fingers	Available Materials
4	102	16	Acetal

Note: Designed to be used with Series 2400 Raised Rib belts to eliminate product transfer and tipping problems.

Note: The fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

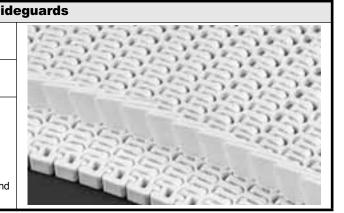
Note: Finger Transfer Plates are installed easily on the conveyor frame with conventional fasteners.



No-Cling F		
Available Materials	light Height	Available F
Available Waterials	mm	in.
Polypropylene, Polyethylene, Acetal	76	3.0

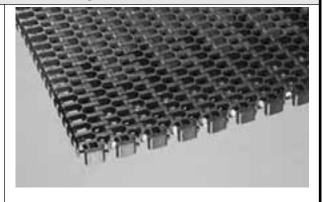
Note: Minimum indent is 1.125 in. (29 mm).

Note: Series 2400 flights do not have bottom hold down guides, but can be used with the bottom hold down belt style, with a minimum flight spacing of 4 in. (102 mm).



Universal S		
Available Materials	eguard Height	Available Side
Available Waterials	mm	in.
Polypropylene, Acetal	25	1.0
Folypropyletie, Acetai	76	3.0

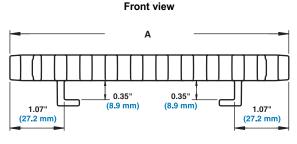
Note: Similar in design and function to other standard, overlapping Intralox sideguards. It is an integral part of the belt, fastened by hinge rods. It adds versatility to the Series 2400 belt when used in multiple rows for separating product.

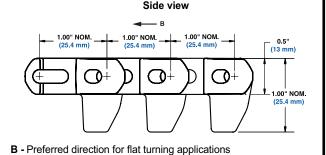

Note: It is easily cleanable and is suitable for food applications (FDA accepted).

Note: A minimum 1.5 inch (38 mm) indent is required for the 2.2 turn ratio and a 3.0 inch (76 mm) indent for the 1.7 turn ratio with this style sideguard.

High Speed Intralon™ Radius Edge

- High speed edge is composed of a nylon-based blend of materials. Edges are available in black or FDA approved bone white.
- Optimal for applications with high speed curves of 300 feet per minute (90 meters per minute) or faster. Contact Customer Service Sales Engineering for application review.
- High speed edge is located on the inside edge of one-directional turning applications only.
- Edges require a stainless steel wear strip to withstand high temperatures.
 Intralox recommends implementing heat shields where temperatures exceed 120° F (49° C).
- Edges can be used in acetal or polypropylene belts.
- Edges are available with Flush Grid, Flush Grid High Deck, Raised Rib, and Friction Top belts styles. Refer to belt data pages for information on preferred run direction. Contact Customer Service for indent of friction surface.
- Nylon rods are recommended for high speed applications.
- Edges are not compatible with Clip-On Sideguards



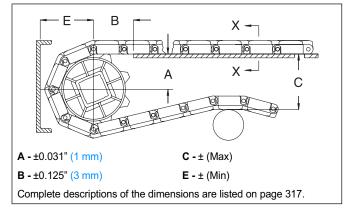


Hold Down Guides (2.2 Only)

- Hold down guides are on the bottom of the belt for use when the belt edges need to be clear. Also available on friction top modules.
- Hold down guides provide the ability to run two belts next to each other without a large gap in between.
- The belt edge is smooth for reduced friction, and is relatively thick to provide wear resistance and protection for the rod retention.
- The minimum nose bar diameter is 1.5 in.
- 2 in., 2.9 in. and 3.9 in. PD Sprocket can not be used with Hold Down Guides (the smallest sprocket that can be used with S2400 FG belt with Hold Down Guides is 5.1 in. PD).
- Other sprocket PDs with large bores may not produce enough clearance between the hold down guide and shaft. Subtracting bore size from the PD easily identifies these sprockets. If the number is less than 2.0 in. (51 mm), this sprocket can not be used with hold down guides.

A - Belt width

Note: Hold down guides are not recommended for low-tension capstan drive spiral applications.

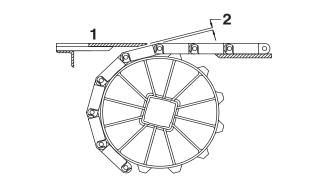

Fig. 2–3 SERIES 2400 HOLD DOWN GUIDES FOR FLAT TURNS

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Spr	rocket Des	scription	Α		E	3	(3	E	Ε
Pitch D	Diameter	No. Teeth	Range (Bottor	n to Top)	in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	111.	mm	111.	mm	111.	mm
SERIES 2400 FLUSH GRID - STRAIGHT EDGE, HOLD DOWN GUIDES & TIGHT TURNING										
2.0 ^a	51 ^a	6	0.62-0.75	16-19	1.22	31	2.00	51	1.31	33
2.9 ^a	74 ^a	9	1.12-1.21	28-31	1.51	38	2.92	74	1.77	45
3.9	99	12	1.62-1.68	41-43	1.86	47	3.86	98	2.24	57
5.1	130	16	2.26-2.31	57-59	2.11	54	5.13	130	2.88	73
6.4	163	20	2.91-2.95	74-75	2.31	59	6.39	162	3.51	89
			SERIES 2400	FLUSH GRID	HIGH D	ECK				
2.0 ^a	51 ^a	6	0.62-0.75	16-19	1.22	31	2.40	61	1.71	43
2.9 ^a	74 ^a	9	1.12-1.21	28-31	1.51	38	3.32	84	2.17	55
3.9	99	12	1.62-1.68	41-43	1.86	47	4.26	108	2.64	67
5.1	130	16	2.26-2.31	57-59	2.11	54	5.53	140	3.28	83
6.4	163	20	2.91-2.95	74-75	2.31	59	6.79	172	3.91	99
		SERIES 2400	FRICTION TOP -	WITH OR WI	THOUT	HOLD D	OWN G	UIDES		
2.0 ^a	51 ^a	6	0.62-0.75	16-19	1.22	31	2.20	56	1.51	38
2.9 ^a	74 ^a	9	1.12-1.21	28-31	1.51	38	3.12	79	1.97	50
3.9	99	12	1.62-1.68	41-43	1.86	47	4.06	103	2.44	62
5.1	130	16	2.26-2.31	57-59	2.11	54	5.33	135	3.08	78
6.4	163	20	2.91-2.95	74-75	2.31	59	6.59	167	3.71	94
;	SERIES 2	400 RADIUS V	WITH INSERT RO	LLERS (ALL	STYLES	S) - FRE	E FLOA	TING RO	LLERS	
2.0 ^a	51 ^a	6	0.62-0.75	16-19	1.22	31	2.09	53	1.40	36
2.9 ^a	74 ^a	9	1.12-1.21	28-31	1.53	39	3.01	76	1.86	47
3.9	99	12	1.62-1.68	41-43	1.78	45	3.95	100	2.33	59
5.1	130	16	2.26-2.31	57-59	2.06	52	5.21	132	2.96	75
6.4	163	20	2.91-2.95	74-75	2.31	59	6.48	165	3.60	91
	SERI	ES 2400 RAD	IUS WITH INSERT	ROLLERS ((ALL ST	YLES) -	DRIVEN	ROLLE	RS	
2.0 ^a	51 ^a	6	0.53-0.66	13-17	1.24	31	2.09	53	1.40	36
2.9 ^a	74 ^a	9	1.04-1.12	26-31	1.57	40	3.01	76	1.86	47


Spr	ocket Des	scription	Α		E	3	(3	į į	
Pitch D	Diameter	No. Teeth	Range (Botto	m to Top)	in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	"".		111.		111.	
3.9	99	12	1.53-1.59	39-40	1.92	49	3.95	100	2.33	59
5.1	130	16	2.18-2.23	55-57	2.19	56	5.21	132	2.96	75
6.4	163	20	2.82-2.86	72-73	2.41	61	6.48	165	3.60	91
			SERIES	2400 RAISE	D RIB					
2.0	51	6	0.62-0.75	16-19	1.22	31	2.50	64	1.81	46
2.9	74	9	1.12-1.21	28-31	1.51	38	3.42	87	2.27	58
3.9	99	12	1.62-1.68	41-43	1.86	47	4.36	111	2.74	70
5.1	130	16	2.26-2.31	57-59	2.11	54	5.63	143	3.38	86
6.4	163	20	2.91-2.95	74-75	2.31	59	6.89	175	4.01	102
			SERIES 24	00 RADIUS I	LAT TO	P				
2.0	51	6	0.62-0.75	16-19	1.22	31	2.15	55	1.46	37
2.9	74	9	1.12-1.21	28-31	1.51	38	3.07	78	1.92	49
3.9	99	12	1.62-1.68	41-43	1.86	47	4.01	102	2.39	61
5.1	130	16	2.26-2.31	57-59	2.11	54	5.28	134	3.03	77
6.4	163	20	2.91-2.95	74-75	2.31	59	6.54	166	3.66	93

a. Can not be used with Hold Down Guides.

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

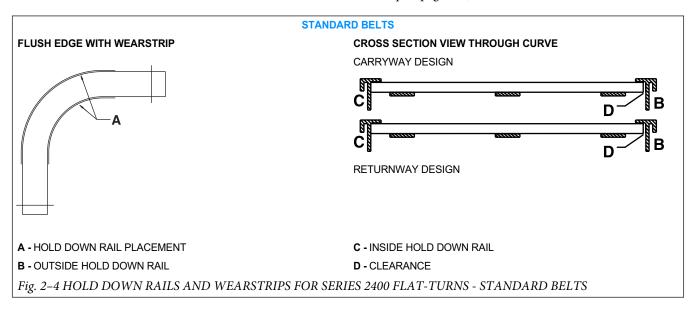
1 - Top surface of dead plate

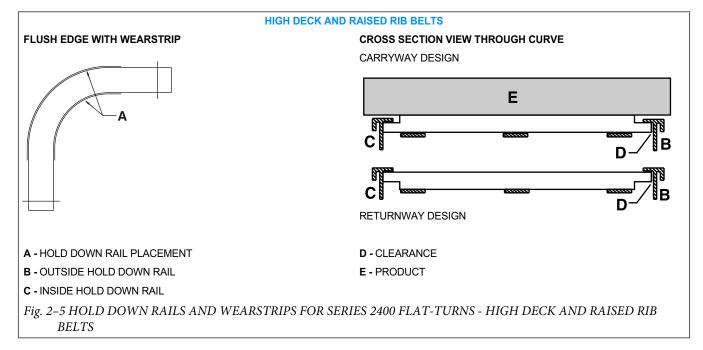
2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch I	Diameter	No. Teeth	in.	mm	
in.	mm	No. Teetii		mm	
2.0	51	6	0.134	3.4	
2.9	74	9	0.088	2.2	
3.9	99	12	0.065	1.7	
5.1	130	16	0.050	1.3	
6.4	163	20	0.039	1.0	

N Z O Z O Z

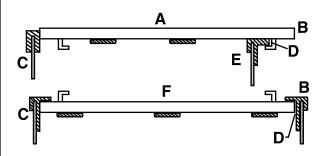


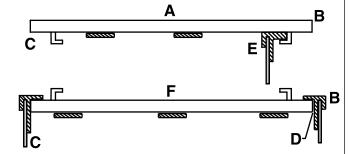

HOLD DOWN RAILS AND WEARSTRIPS

Intralox recommends using continuous hold down rails through an entire turn, starting at a distance of 1X the belt width before the turn and ending 1X the belt width after the turn. This applies to both carryway and returnway. The use of

hold down rails along both side of the belt over the full carryway is recommended but not mandatory.

The hold down guide design allows the belt to be held down without the wearstrip interfering with the carryway surface (for design guidelines regarding Series 2400 with hold down guides, contact Technical Support Group). See "Custom wearstrips" (page 310).





BELTS WITH HOLD DOWN GUIDES

Special wearstrip guidelines for lightly loaded belts with Hold Down Guides. Requirements: Maximum belt pull <20% allowable; belt speed <50 FPM

CROSS SECTION VIEW THROUGH CURVE - WITH INNER BUMP RAIL CROSS SECTION VIEW THROUGH CURVE - NO BUMP RAIL

- A CARRYWAY DESIGN
- **B** OUTSIDE EDGE
- C INSIDE EDGE

- D CLEARANCE
- E HOLD DOWN GUIDE WEARSTRIP
- F RETURNWAY DESIGN

WARNING -IHold down Guides should never be used to guide the belt through the turn in heavily loaded or high speed applications. Rapid wear to the Hold Down Guides and/or wearstrip will occur in applications with high loads or speeds. Contact Technical Support Group for a belt pull analysis.

Fig. 2-6 HOLD DOWN RAILS AND WEARSTRIPS FOR SERIES 2400 FLAT-TURNS - BELTS WITH HOLD DOWN GUIDES

BELT SELECTION INSTRUCTIONS

ENGINEERING PROGRAM ANALYSIS FOR SERIES 2400

Intralox Customer Service Technical Support Group can calculate the estimated belt pull for radius applications using **Series 2400**. The following information is required (refer to "*Radius belt data sheet*" (page 361)):

- Any environmental conditions which may affect the friction coefficient (for dirty or abrasive conditions, use higher friction coefficients than normal)
- Belt width
- Length of each straight run
- Turning angle of each turn

- Turn direction of each turn
- Inside turning radius of each turn
- Carryway/hold down rail material
- Product loading lb/ft² (kg/m²)
- Product back-up conditions
- Belt speed
- Elevation changes on each section
- Operating temperatures.

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. The Engineering Program should be run to insure that the belt is strong enough for the radius application in question.

SERIES 2400 DESIGN GUIDE SUMMARY

For more information, see the Installation, Maintenance and Toubleshooting manual available from Intralox.

SERIES 2400

- A The minimum turning radius for **Series 2400** is 2.2 times the belt width, measured from the inside edge for the standard edge or 1.7 times the belt width for the tight turning style.
- **B** The minimum straight run required between turns of opposing direction is 2.0 times the belt width. Shorter straight sections will lead to high wear on the edge guide rail and high pull stresses in the
- C There is no minimum straight run required between turns that are in the same direction.
- D The minimum length for the final straight run (leading into the drive shaft) is 1.5 times the belt width. Shorter lengths may lead to sprocket wear or tracking problems. For narrow belts, a weighted take-up may be required since proper catenary cannot be achieved therefore, a 5 ft. (1.50 m) minimum final straight run is recommended. See "Special Take-Up Arrangements" (page 324).

- E The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller may be used in place of sprockets.
- F IDLE SHAFT
- G 1ST TURN
- H BELT WIDTH
- I BELT TRAVEL
- J 2ND TURN
- K DRIVE MOTOR
- L DRIVE SHAFT

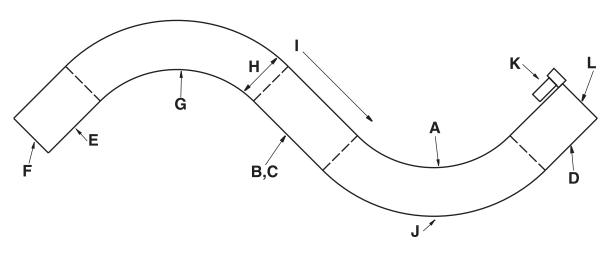
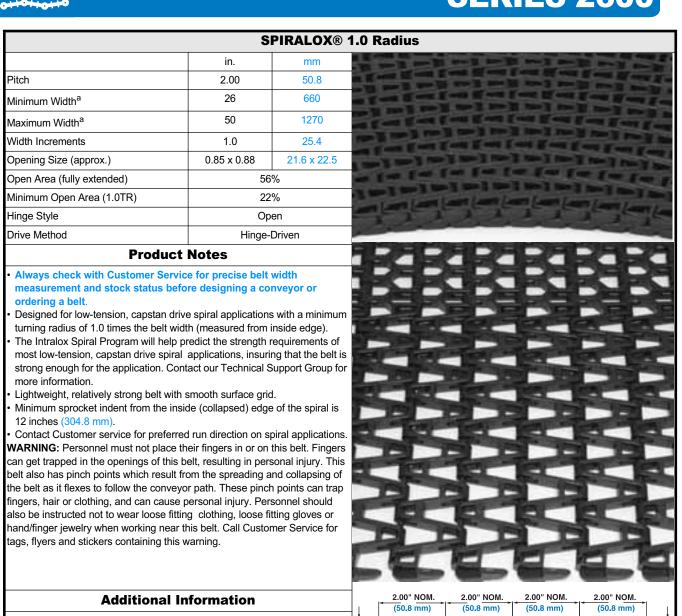



Fig. 2-7 TYPICAL 2-TURN RADIUS LAYOUT

0.59"

(15 mm)

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)
- a. Contact Intralox Customer Service for more information regarding belt widths under 26 in. (660 mm) and over 50 in. (1270 mm).

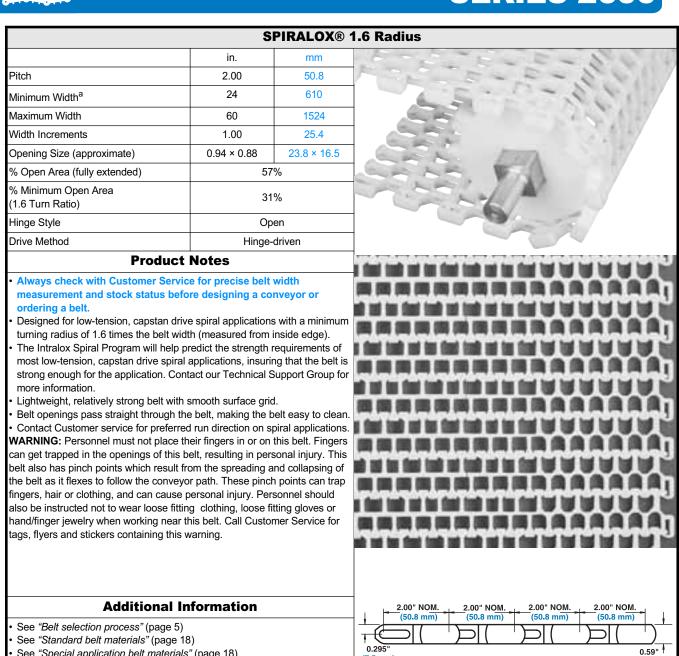
	Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in.	BS	Straight Curved Belt Temperature Range Belt Strength (continuous) ^b			W	Belt Weight	1=White, 2	Accepta =Blue, 3 4=Grey	ability ^c =Natural,		
	(6.1 mm)	lb/ft	kg/m	lbs	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jq	EU MC ^e
Acetal	Acetal	1300	1935	300	136	-50 to 200	-46 to 93	1.46	7.13	•	3	•

0.295

- a. Published curved belt strengths and their method of calculation vary among spiral belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.
- b. Sideflexing applications should not exceed 180 °F (82 °C).
- c. Prior to Intralox's development of Series 2600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

0.59"

	S	PIRALOX®	1.1 Radius				
	in.	mm	STARLEY ST			March 302	100
Pitch	2.00	50.8	國温度	1000			
Minimum Width ^a	26	660	226			7 77	HERE!
Maximum Width ^a	44	1118		To to	evier/ie	To lo	Territoria
Width Increments	1.00	25.4				1-1-	21-10
Opening Size (approximate)	0.85 × 0.88	21.6 × 22.5		THE REAL PROPERTY.	APPENDED TO		PUID I
% Open Area (fully extended)	56	l%			er len ler	Territory	
% Minimum Open Area (1.1 Turn Ratio)	22	2%				1-1-	The state of
Hinge Style	Op	en			-	3-3-	The said
Drive Method	Hinge-	driven	0				
Produc	ct Notes						Test.
turning radius of 1.1 times the belt was to the Intralox Spiral Program will help most low-tension, capstan drive spiral strong enough for the application. Of more information. Lightweight, relatively strong belt with Belt openings pass straight through Minimum sprocket indent from the in 9.0 inches (228.6 mm). Contact Customer service for prefer WARNING: Personnel must not place can get trapped in the openings of this belt also has pinch points which result the belt as it flexes to follow the convertingers, hair or clothing, and can cause also be instructed not to wear loose fin hand/finger jewelry when working neatags, flyers and stickers containing the	p predict the strength ral applications, insuricentact our Technical Stith smooth surface grid the belt, making the braide (collapsed) edge rred run direction on set heir fingers in or on its belt, resulting in persit from the spreading a eyor path. These pinciples personal injury. Per itting clothing, loose fiar this belt. Call Custo	requirements of ng that the belt is Support Group for d. d. belt easy to clean e of the spiral is piral applications this belt. Fingers sonal injury. This and collapsing of a points can trap sonnel should itting gloves or	\$			PATATABLE	
Additional	Information		2.00" N	IOM. 2.00" NOM.	2.00" NOM.	2.00" NOM	
See "Belt selection process" (page.)			(50.8 m		(50.8 mm)	(50.8 mm)	


- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)
- a. Contact Intralox Customer Service for more information regarding belt widths under 26" (660mm) and over 44" (1118mm).

	Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in.	BS	Straight Belt Strength	Curve Strer	d Belt ngth ^a	Temperature Range (continuous) ^b		W	Belt Weight	1=White, 2	/ Accepta 2=Blue, 3 4=Grey	
	(6.1 mm)	lb/ft	kg/m	lbs	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jd	EU MC ^e
Acetal	Acetal	1300	1935	300	136	-50 to 200	-46 to 93	1.44	7.03	•	3	•

0.295

- a. Published curved belt strengths and their method of calculation vary among spiral belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.
- b. Sideflexing applications should not exceed 180 °F (82 °C).
- c. Prior to Intralox's development of Series 2600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)
- Contact Intralox Customer Service for more information regarding belt widths under 24" (610mm).

	Belt Data											
Belt Material	Rod Material Strength Strength ^a (continuous) ^b		W	Belt Weight	Agency 1=White, 2=Blue							
	Ø 0.24 in. (6.1 mm)	lb/ft	kg/m	lbs	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^d	EU MC ^e
Acetal	Acetal	1700	2530	375	170	-50 to 200	-46 to 93	1.41	6.88	•	3	•
Poylpropylene	Acetal	1500	2232	300	136	34 to 200	1 to 93	1.01	4.93	•	3	•
FDA FR Nylon ^f	Nylon	1500	2232	300	136	-50 to 240	-46 to 116	1.22	5.98	•	3	•

- Published curved belt strengths and their method of calculation vary among spiral belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.
- Sideflexing applications should not exceed 180 °F (82 °C)
- Prior to Intralox's development of Series 2600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- This product may not be used for food contact articles that will come in contact with food containing alcohol.

itch
linimum Width ^a
laximum Width
/idth Increments
pening Size (approximate)
Open Area (fully extended)
Minimum Open Area 2.2 Turn Ratio)
inge Style
rive Method
measurement and stock status befordering a belt. Designed for low-tension, capstan driviturning radius of 2.2 times the belt wid The Intralox Spiral Program will help pmost low-tension, capstan drive spiral strong enough for the application. Cormore information. Lightweight, relatively strong belt with

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)
- a. Contact Intralox Customer Service for more information regarding belt widths under 24" (610mm).

	Belt Data													
Belt Material Standard Rod Material Ø 0.24 in.		BS	Straight Belt Strength	Strength ^a						Weight		Agency Acceptability ^c 1=White, 2=Blue, 3=Natural, 4=Grey		
	(6.1 mm)	lb/ft	kg/m	lbs	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	J ^d	EU MC ^e		
Acetal	Acetal	1700	2530	475	215	-50 to 200	-46 to 93	1.54	7.52	•	3	•		
Poylpropylene	Acetal	1500	2232	400	181	34 to 200	1 to 93	1.04	5.08	•	3	•		

2.00" NOM.

0.295

(7.5 mm)

(50.8 mm)

2.00" NOM

(50.8 mm)

2.00" NOM.

(50.8 mm)

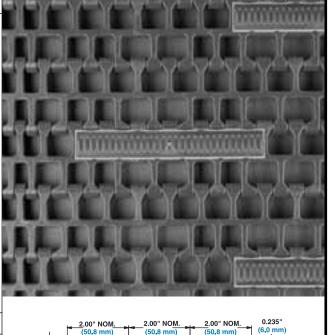
2.00" NOM.

(50.8 mm)

0.59"

(15 mm)

- a. Published curved belt strengths and their method of calculation vary among spiral belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.
- b. Sideflexing applications should not exceed 180 °F (82 °C).
- c. Prior to Intralox's development of Series 2600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- d. Japan Ministry of Health, Labour, and Welfare
- e. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.


	SPIRAI	LOX® Roun	ded Friction Top
	in.	mm	-
Pitch	2.00	50.8	
Minimum Width ^a	24	610	
Maximum Width	60	1524	
Width Increments	1.00	25.4	
Opening Size (approximate)	0.94 × 0.65	23.8 × 16.5	
Hinge Style	Op	pen	- 4
Drive Method	Hinge-	-driven	
Produ	et Notes		Zire Maria Maria Maria

Product Notes

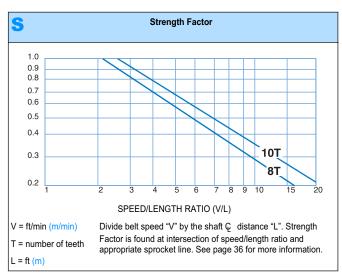
- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- The Intralox Spiral Program will help predict the strength requirements of most low-tension, capstan drive spiral applications, insuring that the belt is strong enough for the application. Contact our Technical Support Group for more information.
- · Lightweight, relatively strong belt with smooth surface grid.
- Belt openings pass straight through the belt, making the belt easy to clean.
- Available in Black Rubber on Blue PP base modules or White Rubber on White PP base modules.
- Black Rubber has a hardness of 55 Shore A. White Rubber has a hardness of 55 Shore D.
- Contact Customer service for preferred run direction on spiral applications. WARNING: Personnel must not place their fingers in or on this belt. Fingers can get trapped in the openings of this belt, resulting in personal injury. This belt also has pinch points which result from the spreading and collapsing of the belt as it flexes to follow the conveyor path. These pinch points can trap fingers, hair or clothing, and can cause personal injury. Personnel should also be instructed not to wear loose fitting clothing, loose fitting gloves or hand/finger jewelry when working near this belt. Call Customer Service for tags, flyers and stickers containing this warning.

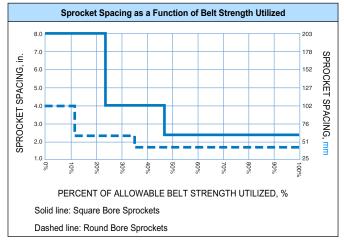
Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

a.	Contact Intralox Customer Service for more information regarding belt widths under 24" (610mm).
	Belt Data

	Belt Data												
Belt Material	Standard Rod Material Ø 0.24 in. (6.1 mm)	BS	Straight Belt Strength	Curved Belt Strength ^a 1.6 TR (2.2, 2.5, 3.2 TR)		Temperature Range (continuous)		Belt Weight 1.6 TR (2.2, 2.5, 3.2 TR)		ht 1=White, 2=Bl 3=Natural, 4=G		Blue,	
		lb/ft	kg/m	lbs	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jc	EU MC ^d	
Acetal	Acetal	1700	2530	375 (475)		34 to 150	1 to 66	1.44 (1.54)	7.03 (7.52)	•			
Polypropylene	Acetal	1500	2232	300 (400)		34 to 150	1 to 66	1.01 (1.04)	4.93 (5.08)	•			


- a. Published curved belt strengths and their method of calculation vary among spiral belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.
- b. Prior to Intralox's development of Series 2600, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- c. Japan Ministry of Health, Labour, and Welfare
- d. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



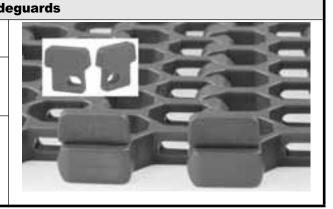
	S	procket and S	Support Quantity R	Reference ^a			
Belt Wid	th Range ^b	Minimum Number of	W	earstrips			
in.	mm	Sprockets Per Shaft ^c	Carryway	Returnway			
24	610	3	4	3			
26	660	3	4	3			
28	711	5	4	3			
30	762	5	5	4			
32	813	5	5	4			
34	864	5	5	4			
36	914	5	5	4			
38	965	5	5	4			
40	1016	5	5	4			
42	1067	5	6	5			
44	1118	7	6	5			
46	1168	7	6	5			
48	1219	7	6	5			
50	1270	7	7	5			
52	1321	7	7	5			
54	1372	7	7	6			
56	1422	7	7	6			
58	1473	7	7	6			
60	1524	9	8	6			
	kets at Maxi	Use Odd Number of mum 6 in. (152 mm) pacing	Contact Technical Support Group	Maximum 12 in. (305 mm) Ç Spacing			

- For low-tension capstan drive spirals contact Technical Support Group for suggested carryway support recommendations. Belt edges must be supported by support rollers on drive shafts. Contact Technical Support Group for more information.
- If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts
- are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 24 in. (610 mm). If the actual width is critical, consult Customer Service.

 These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.

	Sprocket Data ^a													
No. of	Nom.	Nom.			Bore Size	S								
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S. Sizes		Metric	Sizes				
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm				
8 (7.61%)	5.2	132	5.4	136	0.8	20.32	1-1/4 1-7/16 1-1/2 2	1-1/2 2-1/2		40 60				
10 (4.89%)	6.5	165	6.7	170	0.8	20.32	1-1/4 1-7/16 1-1/2 2	1-1/2 2-1/2		40 60				

a. Contact Customer Service for lead times, preferred method of locking down sprockets, and for proper sprocket timing.


		Universal Sid		
Availabl	e Height	Available Materials		
in.	mm			
0.50	12.7			
1.00	25.4	Acetal		
2.00 ^a	50.8 ^a			

Note: Maximizes product carrying capacity: they fit into the very edge of the belt, with no indent.

Note: Assembly does not require "finger cuts" on the modules, so the belt's beam strength is uncompromised.

Note: Turn ratios that Universal Sideguards can be used in are 1.6, 2.2, 2.5, and 3.2.

a. Only available in 1.6 TR

Available Height Available Materials in. mm Materials 0.50 12.7 Acetal, FDA FR Nylon*

Note: Maximizes product carrying capacity: they fit into the very edge of the belt, with no indent.

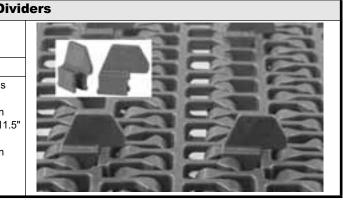
Note: Assembly does not require "finger cuts" on the modules, so the belt's beam strength is uncompromised.

Note: Turn ratios for 0.50 in (12.7 mm) Overlapping Sideguards in Acetal are 1.6, 2.2, 2.5, and 3.2. Turn ratios for 0.50 in (12.7 mm) Overlapping Sideguards in FDA FR Nylon are 2.2, 2.5 and 3.2 only.

Note: The turn ratio for 1.00 in (25.4 mm) Overlapping Sideguards is 1.6 only.

Note: Makes the belt's outer edge more snag-resistant.

Note: Keeps small products from falling through belt gaps.

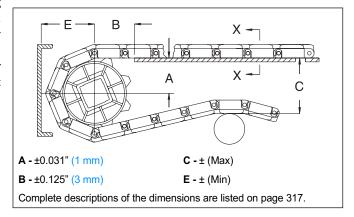


		Lane D
Availabl	e Height	Available Materials
in.	mm	Available Waterials
0.75	19.0	Acetal, Polypropylene

Note: Assembly does not require "finger cuts" on the modules, so the belt's beam strength is uncompromised.

Note: For 1.6 Turning Radius modules the Lane Dividers can be placed on indents of 1.5" (38.1 mm), 2.5" (63.5 mm), 3.5" (88.9 mm), 4.5" (114 mm), 11.5" (292 mm), and up in 1.00" (25.4 mm) increments .

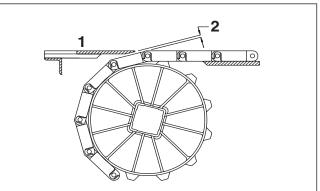
Note: For 2.2 Turning Radius modules the Lane Dividers can be placed on indents of 4.5" (114 mm) and up in 1.00" (25.4 mm) increments .



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



	Sproc	ket Des	cription		Α		В		С		E		
Pitch Diameter		Nominal OD		No. Teeth	Range (Bottom to Top)		in.	mm	in.	mm	in.	mm	
in.	mm	in.	mm	NO. Teetii	in.	mm	III.						
	SERIES 2600 1.0 RADIUS, 1.1 RADIUS, 1.6 RADIUS, 2.2 RADIUS, 2.5 RADIUS, 3.2 RADIUS												
5.2	132	5.4	137	8	2.12-2.32	54-59	2.25	57	5.23	133	2.97	75	
6.5	165	6.7	170	10	2.78-2.94	71-75	2.54	65	6.47	164	3.59	91	
				SEF	RIES 2600 R	OUNDED FR	RICTION 1	ГОР					
5.2	132	5.4	137	8	2.12-2.32	54-59	2.25	57	5.46	139	3.21	82	
6.5	165	6.7	170	10	2.78-2.94	71-75	2.54	65	6.71	170	3.83	97	

Dead Plate Gap

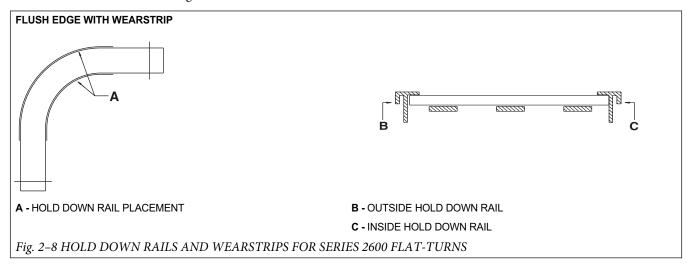
Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.


	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in.	mm	No. reem	in.	mm	
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	

HOLD DOWN RAILS AND WEARSTRIPS

Intralox recommends using continuous hold down rails through an entire turn, starting at a distance of 1X the belt width before the turn and ending 1X the belt width after the turn. This applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory. See "Custom wearstrips" (page 310).

SERIES 2600

BELT SELECTION INSTRUCTIONS

ENGINEERING PROGRAM ANALYSIS FOR SERIES 2600

Intralox Customer Service Technical Support Group can calculate the estimated belt pull for radius applications using **Series 2600**. The following information is required (refer to "*Radius belt data sheet*" (page 361)):

- Any environmental conditions which may affect the friction coefficient (for dirty or abrasive conditions, use higher friction coefficients than normal)
- Belt width
- · Length of each straight run
- Turning angle of each turn

- Turn direction of each turn
- Inside turning radius of each turn
- Carryway/hold down rail material
- Product loading lb/ft² (kg/m²)
- Product back-up conditions
- Belt speed
- Elevation changes on each section
- Operating temperatures.

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. The Engineering Program should be run to insure that the belt is strong enough for the radius application in question.

276

SERIES 2600

SERIES 2600 DESIGN GUIDE SUMMARY

For more information, see the Installation, Maintenance and Toubleshooting manual available from Intralox.

- A The minimum turning radius for **Series 2600** is the turning radius times the belt width, measured from the inside edge.
- **B** The minimum straight run required between turns of opposing direction is 2.0 times the belt width. Shorter straight sections will lead to high wear on the edge guide rail and high pull stresses in the
- C There is no minimum straight run required between turns that are in the same direction.
- **D** The minimum length for the final straight run (leading into the drive shaft) is 1.5 times the belt width. Shorter lengths may lead to sprocket wear or tracking problems. For narrow belts, a weighted take-up may be required since proper catenary cannot be achieved therefore, a 5 ft. (1.50 m) minimum final straight run is recommended. See "Special Take-Up Arrangements" (page 324).

- **E** The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller may be used in place of sprockets.
- F IDLE SHAFT
- G 1ST TURN
- H BELT WIDTH
- I BELT TRAVEL
- J 2ND TURN
- K DRIVE MOTOR
- L DRIVE SHAFT

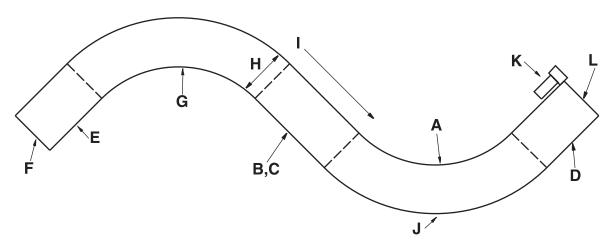


Fig. 2-9 TYPICAL 2-TURN RADIUS LAYOUT

0.59" (15 mm)

	S	PIRALOX® 1	1.6 Radius				
	in.	mm				XI Sec.	1865
Pitch	2.00	50.8				130	
Minimum Width ^a	24	610	-6		. 30	Car.	17.22
Maximum Width	60	1524	- 4		Die.	565 1111	South
Width Increments	0.50	12.7	.488				Billy"
Opening Size (approximate)	0.38 × 0.64	9.52 × 16.5	4		2000		gr.
Open Area (fully extended)	51	1%	CA SE		- B		ñ.
Min. Open Area (1.6 TR)	23	3%		THE .	DXI -	2000	ĺ
Hinge Style	Or	pen	-	2		1111	ĺ
Drive Method	Hinge	-driven	-	54	Orani	9	
Produ	ct Notes		070707E	4 4 4	T. 10 25	四人四人 日	44
measurement and stock status be ordering a belt. Designed for low-tension, capstan turning radius of 1.6 times the belt. The Intralox Spiral Program will he most low-tension, capstan drive sp strong enough for the application. In more information. Lightweight, relatively strong belt were Belt openings pass straight through. Contact Customer Service for prefewarning. Personnel must not place can get trapped in the openings of the belt also has pinch points which results the belt as it flexes to follow the conventingers, hair or clothing, and can cau also be instructed not to wear loose hand/finger jewelry when working netags, flyers and stickers containing the	drive spiral application width (measured from alp predict the strength iral applications, insurface gright the belt, making the best are their fingers in or on his belt, resulting in per alt from the spreading a veyor path. These pincipes personal injury. Per fitting clothing, loose fiter this belt. Call Custo	is with a minimum inside edge). requirements of ing that the belt is port Group for d. belt easy to clean. spiral applications. this belt. Fingers conal injury. This and collapsing of the points can trap resonnel should tting gloves or				$\prod_{i=1}^{m}$	
	I Information		2.00" NO	M 2.00" NOM.	2.00" NOM.	2.00" NOM.	
See "Belt selection process" (page See "Standard helt materials" (page)	,		(50.8 mr	(50.8 mm)	(50.8 mm)	(50.8 mm)	+

- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)
- a. Contact Intralox Customer Service for more information regarding belt widths under 24 in. (610 mm).

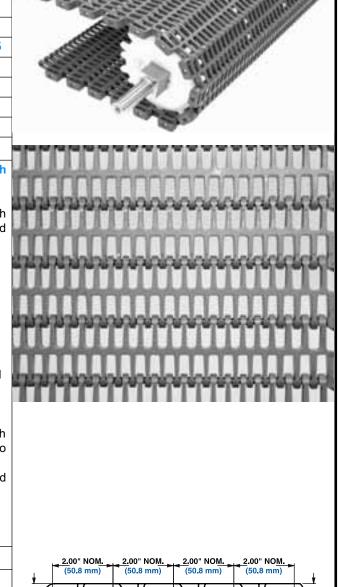
	Belt Data												
Belt Material	Standard Rod Material Ø 0.24 in.	BS	Straight Belt Strength		ed Belt ngth	Temperature Range (continuous)		Weigh		Agency Acceptability		•	
	(6.1 mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jb	EU MC ^c	
Acetal	Acetal	2000	2976	375	170	-50 to 200	-46 to 93	1.74	8.50	•	3	•	
FDA FR Nylon	Nylon	1500	2232	300	136	-50 to 240	-46 to 116	1.41	6.88	•		•	

- a. Prior to Intralox's development of Series 2700, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
 b. Japan Ministry of Health, Labour, and Welfare
 c. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

0.59

(15 mm

	SP	IRALOX®	2.2 Radius				
	in.	mm					
Pitch	2.00	50.8					
Minimum Width ^a	24	610					
Maximum Width	60	1524	200				
Width Increments	0.50	12.7					
Opening Size (approx.)	0.38 x 0.64	9.52 x 16.5					
Open Area (fully extended)	48	%	988				
Min. Open Area (2.2 TR)	23	%	400				
Hinge Style	Ор	Open					
Drive Method	Hinge-	Hinge-Driven					
	4 88 4		7				


Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Designed for low-tension, capstan drive spiral applications with a minimum turning radius of 2.2 times the belt width (measured from inside edge).
- The Intralox Spiral Program will help predict the strength requirements of most low-tension, capstan drive spiral applications, insuring that the belt is strong enough for the application. Contact Technical Support Group for more information.
- Lightweight, relatively strong belt with smooth surface grid.
- Belt openings pass straight through the belt, making the belt easy to clean.
- Contact Customer Service for preferred run direction on spiral applications.

WARNING: Personnel must not place their fingers in or on this belt. Fingers can get trapped in the openings of this belt, resulting in personal injury. This belt also has pinch points which result from the spreading and collapsing of the belt as it flexes to follow the conveyor path. These pinch points can trap fingers, hair or clothing, and can cause personal injury. Personnel should also be instructed not to wear loose fitting clothing, loose fitting gloves or hand/finger jewelry when working near this belt. Call Customer Service for tags, flyers and stickers containing this warning.

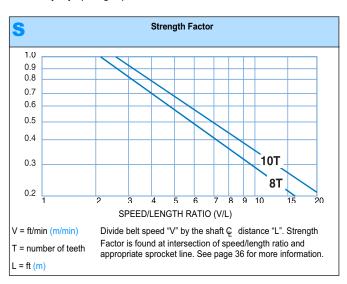
Additional Information

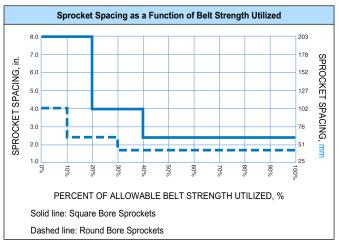
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

a. Contact Intralox Customer Service for more information regarding belt widths under 24 in. (610 mm).

	Belt Data												
Belt Material	Material Belt Strength			Curved Belt Strength		Temperature Range (continuous)		Belt Weight	Agency Acceptability ^a 1=White, 2=Blue, 3=Natural, 4=Grey				
	(6.1 mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	Jb	EU MC ^c	
Acetal	Acetal	1700	2530	375	170	-50 to 200	-46 to 93	1.85	9.03	•	3	•	
Polypropylene	Acetal	1500	2232	300	136	34 to 200	1 to 93	1.26	6.15	•	3	•	

0.295"


- a. Prior to Intralox's development of Series 2700, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of the manual, third party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.
- b. Japan Ministry of Health, Labour, and Welfare
- c. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



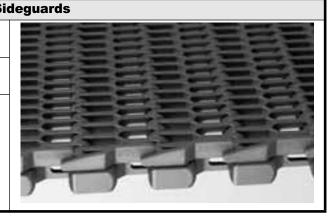
	S	procket and S	Support Quantity R	Reference ^a
Belt Wic	dth Range ^b	Minimum Number of	We	earstrips ^d
in.	mm	Sprockets Per Shaft ^c	Carryway	Returnway
24	610	5	2	2
26	660	5	2	2
28	711	5	2	2
30	762	5	3	2
32	813	5	3	2
34	864	7	3	2
36	914	7	3	2
38	965	7	3	2
40	1016	7	3	2
42	1067	7	3	2
44	1118	7	3	2
46	1168	9	3	2
48	1219	9	3	2
50	1270	9	3	2
52	1321	9	3	2
54	1372	9	3	2
56	1422	9	4	3
58	1473	11	4	3
60	1524	11	4	3
For Other Widths, Use Odd Number of Sprockets at Maximum 8 in. (203 mm) © Spacing			Maximum 25 in. (635 mm)	Maximum 30 in. (762 mm) Ç Spacing

- For low-tension capstan drive spirals contact Technical Support Group for suggested carryway support recommendations. Belt edges must be supported by
- support rollers on drive shafts. Contact Technical Support Group for more information.

 If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.50 in. (12.7 mm) increments beginning with minimum width of 24 in. (610 mm). If the actual width is critical, consult Customer Service.
- These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. See Retainer Rings/Center Sprocket Offset chart on page 304 for lock down location.
- d. Carryway Spacing dependant on a distributed 2 lb/ft² at 65 °F for Acetal belt with Acetal Rod with a 2" and 4" overhang.

	Sprocket Data ^a											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Sizes			
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric Sizes			
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm		
8 (7.61%)	5.2	132	5.4	136	0.8	20.32	1-1/4 1-7/16 2	1-1/2 2-1/2		60		
10 (4.85%)	6.5	165	6.7	170	0.8	20.32	1-1/4 1-7/16 2	1-1/2 2-1/2		40 60		

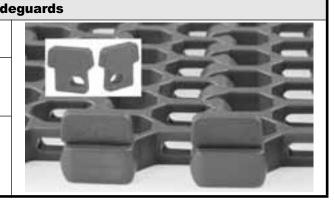
a. Contact Customer Service for lead times, preferred method of locking down sprockets, and for proper sprocket timing.


Overlapping S						
Available Materials	in.					
Available Materials						
Acetal, FDA FR Nylon	12.7	0.50				
Acetal, FDA FR Nyloli	25.4	1.00				

Note: Sideguards maximize product carrying capacity: they fit into the very edge of the belt, with no indent.

Note: Sideguard assembly does not require "finger cuts" on the modules, so the belt's beam strength is uncompromised.

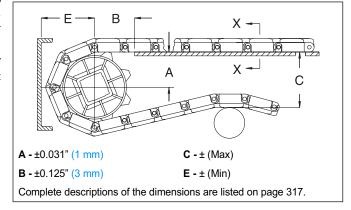
Note: Turn ratios for 0.50 in (12.7 mm) Overlapping Sideguards in Acetal are 1.6 and 2.2. Turn ratios for 0.50 in (12.7 mm) Overlapping Sideguards in FDA FR Nylon is 2.2 only.


Note: The turn ratio for 1.00 in (25.4 mm) Overlapping Sideguard is 1.6 only.

		Universal Sid
Availabl	e Height	Available Materials
in.	mm	Available iviaterials
0.50	12.7	
1.00	25.4	Acetal
2.00 ^a	50.8 ^a	

Note: Maximizes product carrying capacity: they fit into the very edge of the belt, with no indent.

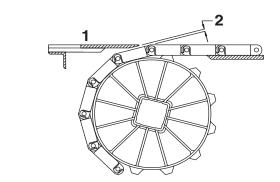
Note: Assembly does not require "finger cuts" on the modules, so the belt's beam strength is uncompromised.


a. Only available in 1.6 TR

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



	Sprock	et Desc	cription	1	Į.	В		С		E		
Pitch D	iameter	Nomir	nal OD	No. Teeth	Range (Bottom to Top)		in.	mm	in.	mm	in.	mm
in.	mm	in.	mm	NO. Teetii	in. mm							
			•	SERIES 2	2700 1.6 RAD	IUS, 2.2 RAI	DIUS				•	
5.2	132	5.4	137	8	2.12-2.32	54-59	2.25	57	5.23	133	2.97	75
6.5	165	6.7	170	10	2.78-2.94	71-75	2.54	65	6.47	164	3.59	91

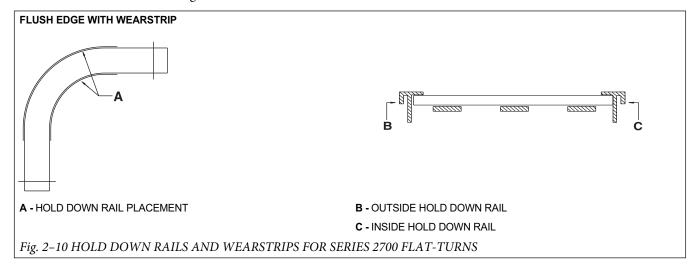
Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap


Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in.	mm	No. reem	in.	mm	
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	

SERIES 2700

HOLD DOWN RAILS AND WEARSTRIPS

Intralox recommends using continuous hold down rails through an entire turn, starting at a distance of 1X the belt width before the turn and ending 1X the belt width after the turn. This applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory. See "Custom wearstrips" (page 310).

BELT SELECTION INSTRUCTIONS

ENGINEERING PROGRAM ANALYSIS FOR SERIES 2700

Intralox Customer Service Technical Support Group can calculate the estimated belt pull for radius applications using **Series 2700**. The following information is required (refer to "Radius belt data sheet" (page 361)):

- Any environmental conditions which may affect the friction coefficient (for dirty or abrasive conditions, use higher friction coefficients than normal)
- · Belt width
- · Length of each straight run
- Turning angle of each turn

- Turn direction of each turn
- Inside turning radius of each turn
- Carryway/hold down rail material
- Product loading lb/ft² (kg/m²)
- Product back-up conditions
- Belt speed
- Elevation changes on each section
- Operating temperatures.

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox **Customer Service Technical Support Group. The Engineering Program should be run to insure that** the belt is strong enough for the radius application in question.

intralox

SERIES 2700 DESIGN GUIDE SUMMARY

For more information, see the *Installation, Maintenance and Toubleshooting manual* available from Intralox.

- A The minimum turning radius for **Series 2700** is 2.2 times the belt width, measured from the inside edge for the standard edge or 1.7 times the belt width for the tight turning style.
- B The minimum straight run required between turns of opposing direction is 2.0 times the belt width. Shorter straight sections will lead to high wear on the edge guide rail and high pull stresses in the helt
- **C** There is no minimum straight run required between turns that are in the same direction.
- D The minimum length for the final straight run (leading into the drive shaft) is 1.5 times the belt width. Shorter lengths may lead to sprocket wear or tracking problems. For narrow belts, a weighted take-up may be required since proper catenary cannot be achieved therefore, a 5 ft. (1.50 m) minimum final straight run is recommended. See "Special Take-Up Arrangements" (page 324).

- E The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller may be used in place of sprockets.
- F IDLE SHAFT
- G 1ST TURN
- H BELT WIDTH
- I BELT TRAVEL
- J 2ND TURN
- **K** DRIVE MOTOR
- L DRIVE SHAFT

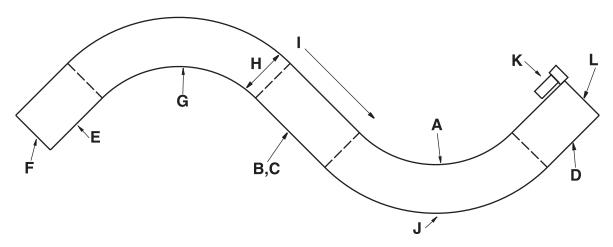
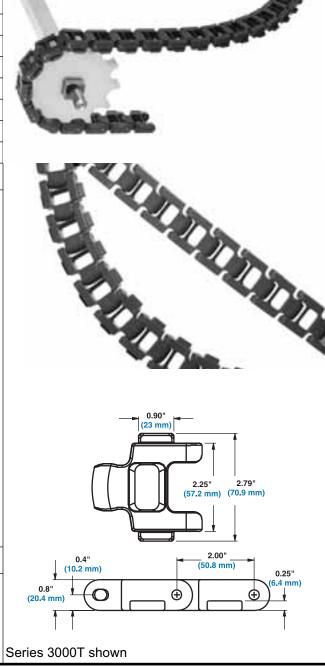


Fig. 2-11 TYPICAL 2-TURN RADIUS LAYOUT

Chain

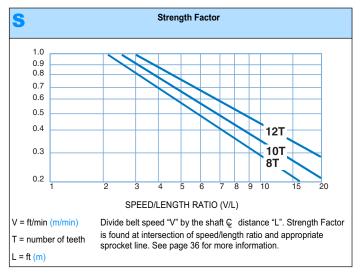
		Knuckle
	in.	mm
Pitch	2.00	50.8
Molded Width	2.25	57
Open Area	-	
Hinge Style	Clo	sed
Drive Method	Center	-driven
Drod	uet Notes	


Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Thick, durable plastic surface around stainless steel pins for long life and less breakage.
- Available in both straight and turning versions.
- Turning version designed for applications with a minimum centerline turning radius of 16 in. (406 mm).
- Both versions are available with extended pins.
- Available in 10 ft. (3.1 m) boxed lengths.
- Capable of running on the same tracks as other common chains.

WARNING: Only the Series 3000T (turning version) Knuckle Chain can be used for turning applications. The Series 3000S (straight version) Knuckle Chain cannot be used for turning applications. Hold down edge guides are mandatory on the inside and outside edges of all turns, on both the carrying and return sides of the belt. Unless they interfere with the operation of the carrying equipment, the hold down edge guides should be used throughout the conveyor to protect both the belt and personnel adjacent to the conveyor.

Additional Information


- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data											
Chain Material	Standard Rod Material	BS	Chain Strength	Temperatu (contin	•	W	Chain Weight		ency Acceptabili 2=Blue, 3=Natura	•	Grey	
	Ø 0.25 in. (6.4 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	USDA-FSIS - Meat & Poultry	J ^a	EU MC ^b	
Acetal (Straight)	303 SS	700	317	-50 to 200	-46 to 93	0.88	1.21	•	•	3	•	
Acetal (Turning)	303 SS	560	254	-50 to 200	-46 to 93	0.90	1.25	•	•	3	•	

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Chain Pull Limit with UHMW Polyethylene Sprockets, Based on Bore Size - lb (kg)												
No. of Teeth				40 mm square		1 in. round		1.25 in. round		1.5 in. round			
	in.	mm	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	
8	5.2	132	640	290	640	290	74	34	90	41	162	74	
10	6.5	165	520	236	520	236	78	35	95	43	172	78	
12	12 7.7 196 432 196 432 196 65 29 79 36 143 65												
				Bold	entries ind	dicate sta	ndard siz	zes	•				

						Ма	chined	Sproc	ket Da	ataª	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available E	Bore Size	s	
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)	Dia. III.	mm	in.	mm	in.	mm	Round	Square	Round	Square	
							in.b	in.	mm ^b	mm	
8 (7.61%) Square Bore	5.2	132	5.3	135	1.5	38	1-1/4	1.5		40	
8 (7.61%) Round Bore	5.2	132	5.3	135	1.2	30	1-1/4	1.5		40	3
10 (4.89%)	6.5	165	6.7	170	1.5	38	1-1/4	1.5		40	1 - Pith diameter
12 (3.41%)	7.7	196	8.0	203	1.5	38	1-1/4	1.5		40	2 - Outer diameter
											3 - Hub width

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

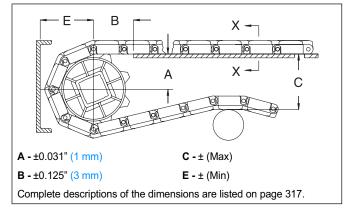
Extended Pins and Tabs

EXTENDED PINS — Modules with 303 stainless steel extended pins can be spliced into both the basic turning and straight running chains. These pins are commonly used in side by side chain strands where rollers are used for low back pressure applications. The minimum extended pin spacing is 2.0 in. (50.8 mm). The extended pin modules can be spliced into the standard chain every 2.0 in. (50.8 mm).

EXTENDED TABS — Modules with extended tabs can be spliced into both the basic turning and straight running chains. These extended tabs can be used to attach flights, cleats, etc. The extended tab modules are based on the turning chain design, so the rating for the turning chain should be used even if the extended tab modules are spliced into straight running chain. The minimum tab spacing is 2.0 in. (50.8 mm). The tabs can be spliced into the standard chain every 2.0 in. (50.8 mm).

Intralox offers only extended tabs and extended pins.
Attachments for either of these accessories are not
available through Intralox. Contact Customer Service for
lead-times.

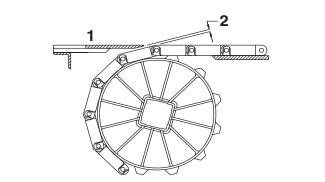
Extended pins for straight or turning versions


Extended tabs for straight or turning versions

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.



Spr	rocket Des	scription	Α	В		С		E				
Pitch Diameter		No. Teeth	Range (Botto	in.	mm	in.	mm	in.	pa pa			
in.	mm	No. reem	in.	mm	111.		111.		111.	mm		
	SERIES 3000 KNUCKLE CHAIN											
5.2	132	8	2.01-2.21	51-56	2.29	58	5.23	1.33	3.14	80		
6.5	165	10	2.68-2.84	68-72	2.63	67	6.47	164	3.76	96		
7.7	196	12	3.33-3.46	85-88	2.94	75	7.73	196	4.39	112		

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

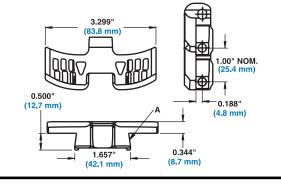
1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in.	mm	
in.	mm	NO. 166tii		111111	
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	

	S	4009 Flu
	in.	mm
Pitch	1.00	25.4
Molded Width	3.3	84
Open Area	13	%
Hinge Style	Clo	sed
Drive Method	Hinge-	driven

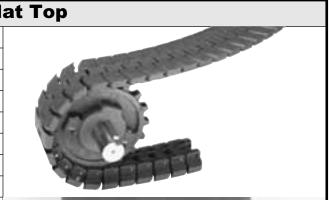

Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Designed for applications with a minimum centerline turning radius of 18 in. (457 mm).
- Same deck thickness as the straight running belt counterpart Series 900 FG [0.344 in. (8.7 mm)].
- Series 4000 Sideflexing belts use S1400 sprockets.
- All Series 1400/4000 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers.
- Available in 10 ft. (3.1 m) boxed lengths.
- Corner Tracks, with bevel design, are mandatory on the inside edges of all turns.
- Intralox's Engineering Program for S4000 Sideflexing belts can calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.

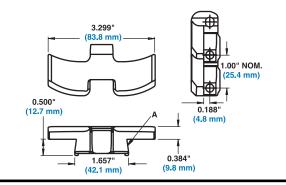
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data												
Belt Material	Belt Width		Standard Rod Material Ø 0.25 in.	BS	·		re Range uous)		Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey			
	in. mm		(6.4 mm)	lb	kg	°F	°C	lb/ft	kg/m	FDA (USA)	J ^a	EU MCb	
Acetal	3.3	84	303 SS	500	227	-50 to 200	-46 to 93	0.97	1.44	•	3	•	

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		64009 FI
	in.	mm
Pitch	1.00	25.4
Molded Width	3.3	84
Open Area	0,	%
Hinge Style	Clo	sed
Drive Method	Hinge-	-driven


Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Designed for applications with a minimum centerline turning radius of 18 in. (457 mm).
- Same deck thickness as the straight running belt counterpart Series 900 FT [0.384 in. (9.8 mm)].
- Series 4000 Sideflexing belts use S1400 sprockets.
- All Series 1400/4000 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers.
- Available in 10 ft. (3.1 m) boxed lengths.
- Corner Tracks, with bevel design, are mandatory on the inside edges of all turns.
- Intralox's Engineering Program for S4000 Sideflexing belts can calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.
- Refer to Belt Data table below for minimum centerline turning radius.

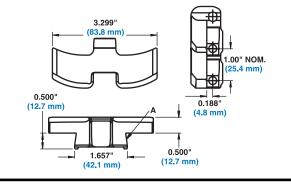
- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

					Ве	Belt Data												
Belt Material			Material Strength (continuous) Weight 1=Whi						Agency 1=White, 2=									
	in.	mm	(6.4 mm)	lb	kg	°F °C		lb/ft	kg/m	FDA (USA)	J ^a	EU MC ^b						
Acetal	3.3	84	303 SS	500	227	-50 to 200	-46 to 93	1.11	1.65	•	3	•						

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.



		64014 FI
	in.	mm
Pitch	1.00	25.4
Molded Width	3.3	84
Open Area	0	%
Hinge Style	Clo	sed
Drive Method	Hinge-	driven
D., a.d.	4 NI-4	


Product Notes

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Designed for applications with a minimum centerline turning radius of 18 in. (457 mm).
- Same deck thickness as the straight running belt counterpart Series 1400 FT [0.5 in. (12.7 mm)].
- Series 4000 Sideflexing belts use S1400 sprockets.
- All Series 1400/4000 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers.
- Available in 10 ft. (3.1 m) boxed lengths.
- Corner Tracks, with bevel design, are mandatory on the inside edges of all turns.
- Intralox's Engineering Program for S4000 Sideflexing belts can calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data												
Belt Material	Belt Width		Standard Rod Material Ø 0.25 in.	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight	Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey			
	in.	mm	(6.4 mm)	lb	lb kg		°C	lb/ft	kg/m	FDA (USA)	J ^a	EU MCb	
Acetal	3.3	84	303 SS	500	227	-50 to 200	-46 to 93	1.29	1.92	•	3	•	

- a. Japan Ministry of Health, Labour, and Welfare
- b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

0.48" (12.2 mm)

1.65"

2.36" (59.9 mm)

0.384"

(9.8 mm)

	\$4090	Sideflex	ing Flat T	ор
	in.	mm		115el 1
Pitch	1.00	25.4		
Molded Width	4.5	114	-	2 25 11/1
	7.5	191		
Open Area	0	%	400	
Hinge Style	Clo	sed	-	1000
Drive Method	Hinge	-driven		1
Product	Notes			100
 Always check with Custome width measurement and stord designing a conveyor or or example. Same deck thickness as the scounterpart Series 900 Flat T Series 4000 Sideflexing belts All Series 1400/4000 sprockers shafts do not have to be remore changeovers. Available in 10 ft. (3.1 m) box Intralox's Engineering Prograte belts can calculate the estimate system. Contact Intralox Sale assistance. Refer to Belt Data table below turning radius. 	cck status be dering a belt. straight running [0.384 in. (ase \$1400 spects use the split oved for retrofited lengths. In for \$4000 spects belt pull for set	g belt 9.8 mm)]. prockets. It design so its and Sideflexing or your		
Additional Ir	nformati	on	1]

	Belt Data													
Belt Material	Belt Width Standard Pin Material Ø 0.25 in. (6.4 mm)		BS	Belt Strength	Temperature Range (continuous)		W	vveignit		Minimum Centerline Turning Radius		Agency Acceptability: 1=White, 2=Blue, 3=Natural, 4=Grey		
	in.	mm		lb	kg	°F	°C	lb/ft	kg/m	in.	mm	FDA (USA)	Ja	EU MC ^b
Acetal	4.5	114	303 SS	500	227	-50 to 200	-46 to 93	1.40	2.08	18	457	•	3	•
Acetal	7.5	191	303 SS	500	227	-50 to 200	-46 to 93	1.86	2.77	24	610	•	3	•
FDA HR	7.5	191	303 SS	500	227	-50 to 240	-46 to 116	1.54	2.29	24	610	•		

0.64" (16.3 mm)

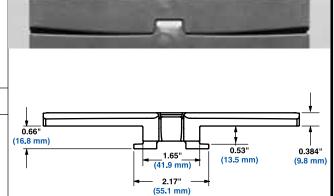
Nylon^c

• See "Belt selection process" (page 5) See "Standard belt materials" (page 18)

• See "Friction factors" (page 31)

See "Special application belt materials" (page 18)

- a. Japan Ministry of Health, Labour, and Welfare
 b. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
 c. This product may not be used for food contact articles that will come in contact with food containing alcohol.



O+10+10			SERIE
	\$4091	Sideflex	ing Flat Top
	in.	mm	3//////
Pitch	1.00	25.4	33331
Molded Width	4.5	114	A 100
	7.5	191	
Open Area	0,	<u> </u> %	
Hinge Style	Clo	sed	Harry Harry
Drive Method	Hinge-	driven	1
Prod	uct Notes		Commence of the latest
Always check with Cu		-	
width measurement a designing a conveyor		ore	The same of the sa
Same deck thickness a		g belt	
counterpart Series 900	•	•	OX CONTRACTOR
Series 4000 Sideflexing	•		
 All Series 1400/4000 sp shafts do not have to be changeovers. 	•	•	
 Available in 10 ft. (3.1 n 	n) boxed lengths.		3
 Intralox's Engineering F 		ideflexing	

belts can calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.

Refer to Belt Data table below for minimum centerline turning radius.

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

	Belt Data													
Belt Material	Belt \	Width	Standard Pin Material Ø 0.25 in. (6.4 mm)	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	Minimum Centerline Turning Radius		Agency Acceptability s 1=White, 2=Bi 3=Natural, 4=0		Slue,
	in.	mm		lb	kg	°F	°C	lb/ft	kg/m	in.	mm	FDA (USA)	Ja	EU MC ^b
Acetal	4.5	114	303 SS	500	227	-50 to 200	-46 to 93	1.40	2.08	18	457	•	3	•
Acetal	7.5	191	303 SS	500	227	-50 to 200	-46 to 93	1.84	2.74	24	610	•	3	•
FDA HR Nylon ^c	7.5	191	303 SS	500	227	-50 to 240	-46 to 116	1.54	2.29	24	610	•		

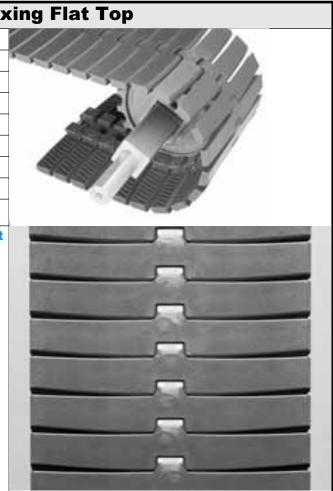
- Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

 c. This product may not be used for food contact articles that will come in contact with food containing alcohol.

0.384

(9.8 mm)

0.70"


(17.8 mm)

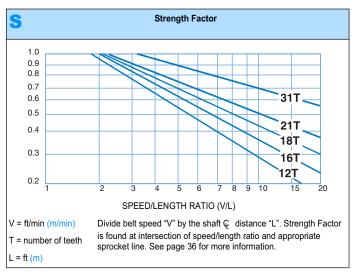
	\$4092	Sideflex
	in.	mm
Pitch	1.00	25.4
Molded Width	4.5	114
	7.5	191
Open Area	0	%
Hinge Style	Clo	sed
Drive Method	Hinge	-driven
Proc	luct Notes	

- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Same deck thickness as the straight running belt counterpart Series 900 Flat Top [0.384 in. (9.8 mm)].
- Series 4000 Sideflexing belts use S1400/4000 sprockets.
- All Series 1400/4000 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers.
- Available in 10 ft. (3.1 m) boxed lengths.
- Intralox's Engineering Program for S4000 Sideflexing belts can calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.
- Refer to Belt Data table below for minimum centerline turning radius.

Additional Information

- See "Belt selection process" (page 5)
- See "Standard belt materials" (page 18)
- See "Special application belt materials" (page 18)
- See "Friction factors" (page 31)

(56.4 mm)


2.98" (75.6 mm)

						Belt Da	ata											
Belt Material			Material Ø 0.25 in.		Material Strength (continuous)		The state of the s				•	W	Belt Weight	Cent	mum erline Radius	Agency / 1=Whi 3=Natu	te, 2=B	lue,
	in.	mm	(6.4 mm)	lb	kg	°F	°C	lb/ft	kg/m	in.	mm	FDA (USA)	Ja	EU MC ^b				
Acetal	4.5	114	303 SS	500	227	-50 to 200	-46 to 93	1.61	2.40	18	457	•	3	•				
Acetal	7.5	191	303 SS	500	227	-50 to 200	-46 to 93	2.05	3.05	24	610	•	3	•				
FDA HR Nylon ^c	7.5	191	303 SS	500	227	-50 to 240	-46 to 116	1.71	2.55	24	610	•						

0.90" (22.9 mm)

- a. Japan Ministry of Health, Labour, and Welfare
- European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.
- This product may not be used for food contact articles that will come in contact with food containing alcohol.

	Plastic Sprocket Data ^a													
No. of Teeth (Chordal Action)	Nom. Pitch Dia. in.	Nom. Pitch Dia. mm	Nom. Outer Dia. in.	Nom. Outer Dia. mm	Nom. Hub Width in.	Nom. Hub Width	F	Available E Sizes Square	Bore Size					
12 (3.41%)	3.9 ^b	99 ^b	3.9	99	1.5	38	in.	in. 1.5	mm -	mm 40				
18 (1.52%)	5.7	145	5.8	148	1.5	38	2	2.5	50	60				
24 (0.86%)	7.7	196	7.8	198	1.5	38		2.5		60				
											1 - Pith diameter2 - Outer diameter3 - Hub width			

- a. Contact Customer Service for lead times.
- b. 3.9PD sprockets are not compatible with Series 4092 belts.

	Plastic Split Sprocket Data ^a													
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	А	vailable E	Bore Sizes		2			
Teeth (Chordal	Pitch Dia.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S. Si	zes	Metric S	Sizes				
Action)	in.	mm	in.	mm	in.	mm	Round in.b	Square in.	Round mm ^b	Square mm				
16 (1.92%)	5.1	130	5.2	132	1.5	38	1 to 2 in 1-16 increments	1.5	25 to 50 in 5 increments	40				
											1 - Pith diameter			
											2 - Outer diameter 3 - Hub width			

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

Maxii	Maximum Load per Glass Filled Nylon Split Sprocket Based on Round Bore Size Range - Ib (kg)													
No. of Teeth		. Pitch neter	1 ir 1-3/1	• •	1-1/4 1-3/8		1-7/16 ir		1-13/1 2 i		25 mi 35 m		40 n 50 ı	
	in.	mm	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg
18	5.7	145	300	135	340	155	400	180	540	245	240	110	410	185
21	6.7	170	225	102	275	124	350	158	500	226	175	79	400	181

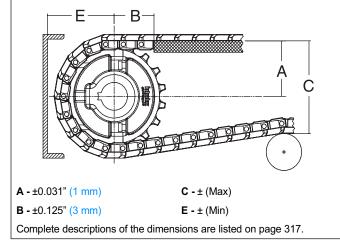
			Glas	s Fill	ed N	ylon	Square a	nd Ro	und Bore	e Split	Sprocket Data ^a
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Sizes		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. Siz	zes	Metric S	izes	
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round in.b	Square in.	Round mm ^b	Square mm	A STATE OF
18	5.7	145	5.8	148	2.0	51	1 to 2 in	1.5	25 to 50 in	40	A STATE OF THE REAL PROPERTY.
(1.52%)							1/16 increments	2.5	5 increments	60	-
21	6.7	170	6.8	172	2.0	51	1 to 2 in	1.5	25 to 50 in	40	
(1.12%)							1/16 increments ^c	2.5	5 increments	60	

- a. Contact Customer Service for lead times.
- Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
- Tight fit round bores are available in 1-1/4, 1-3/16, 1-1/2, and 1-7/16 in.

				Po	lypro	pylene	Comp	osite	Split S	procke		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	Available Bore Sizes				
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes		
(Chordal Action)	Dia. in.	Dia. mm	Dia. in.	Dia. mm	Width in.	Width mm	Round	Square	Round	Square		
							in. ^b	in.	mm ^b	mm		
18	5.7	145	5.8	148	2.0	51		1.5		40		
(1.52%)								2.5		60		
21	6.7	170	6.8	172	2.0	51		1.5		40		
(1.12%)								2.5		60		

- a. Contact Customer Service for lead times.
- b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

				Po	lyuret	hane	Compo	site S	plit Sp	rocke
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Δ	vailable E	Bore Size	S
Teeth (Chordal	Pitch Dia. in.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
31	9.9	251	10.1	257	1.50	38		3.5		
(0.51%)					1.67	44		2.5 ^b		


- a. Contact Customer Service for lead times.
 b. The 2.5" square bore is created by using a bore adapter in the 3.5" square bore sprocket.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Spr	ocket Des	scription	Α		E	3	(;		
Pitch D	iameter	No. Teeth	Range (Botto	m to Top)	in.	mm	in.	mm	in.	mm
in.	mm	No. reem	in.	mm	111.	mm		mm	"".	mm
			SERIES	4009 FLUSH	GRID					
3.9	99	12	2.07-2.14	53-54	2.31	59	4.62	117	2.73	69
5.1	130	16	2.73-2.78	69-71	2.51	64	5.90	150	3.37	86
5.7	145	18	3.05-3.10	77-79	2.54	65	6.54	166	3.69	94
6.7	170	21	3.54-3.58	90-91	2.70	69	7.50	191	4.17	106
9.9	251	31	5.15-5.18	131-132	3.15	80	10.70	272	5.77	147
			SERIE	S 4009 FLAT	TOP					
3.9	99	12	2.07-2.14	53-54	2.31	59	4.66	118	2.77	70
5.1	130	16	2.73-2.78	69-71	2.51	64	5.94	151	3.41	87
5.7	145	18	3.05-3.10	77-79	2.54	65	6.58	167	3.73	95
6.7	170	21	3.54-3.58	90-91	2.70	69	7.54	192	4.21	107
9.9	251	31	5.15-5.18	131-132	3.15	80	10.74	273	5.81	148
			SERIE	S 4014 FLAT	TOP					
3.9	99	12	2.07-2.14	53-54	2.31	59	4.24	108	2.68	68
5.1	130	16	2.73-2.78	69-71	2.51	64	5.49	139	3.64	92
5.7	145	18	3.05-3.10	77-79	2.54	65	6.09	155	3.95	100
6.7	170	21	3.54-3.58	90-91	2.70	69	7.09	180	4.43	113
9.9	251	31	5.15-5.18	131-132	3.15	80	10.86	276	5.93	151
		SE	RIES 4090, 4091,	4092 SIDEF	LEXING	FLAT T	ОР			
3.9	99	12	2.07-2.14	53-54	2.31	59	4.62	117	2.73	69
5.1	130	16	2.73-2.78	69-71	2.51	64	5.90	150	3.37	86
5.7	145	18	3.05-3.10	77-79	2.54	65	6.54	166	3.69	94
6.7	170	21	3.54-3.58	90-91	2.70	69	7.50	191	4.17	106
9.9	251	31	5.15-5.18	131-132	3.15	80	10.70	272	5.77	147

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

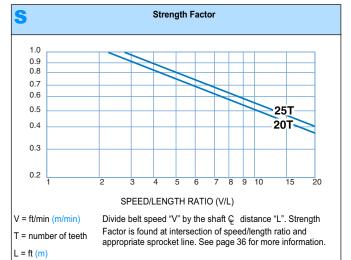
Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	on	Gap				
Pitch [Diameter	No. Teeth	in	mm			
in.	mm	No. reem	in.	mm			
3.9	99	12	0.066	1.7			
5.1	130	16	0.050	1.3			
5.7	145	18	0.044	1.1			
6.7	170	21	0.038	1.0			
9.9	251	31	0.025	0.6			

		Flush	Grid
	in.	mm	
Pitch	1.01	25.7	
Minimum Width	6	152.4	- 4 - 6 B
Width Increments	1.00	25.4	
Opening Sizes (approx.)	0.7 x 0.5	17.8 x 12.7	
Open Area	58		
Hinge Style	Clo	sed	
Drive Method	Center/Hir	nge-Driven	
Produc	Notes		
 Always check with Custon width measurement and signing a conveyor or of the Easy to retrofit from existing conveyor changes Split steel sprockets available easier replacement PVDF material is a polymer washer environments Open surface enhances spriperformance 	rdering a belt. steel belting with le; longer sproce	th virtually no ket life and term use in	
Additional I	nformati	on	
 See "Belt selection process" See "Standard belt materials See "Special application bel 	s"(page 18)	ge 18)	1.01° NOM. 1.01° NOM. 1.01° NOM. (25.4 mm) (25.4 mm) (25.4 mm) (0.50° (12.7 mm)

	Belt Data													
Belt Material	Standard Rod Material	BS	Belt Strength	Temperatu (contin	•	W	Belt Weight		Ag 1-White, 2	ency Ac 2-Blue, 3		-	Grey	
	Ø 0.18 in. (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	FDA (USA)	USDA Dairy ^a	CFA ^b	A ^c	Jd	Z ^e	EU MC ^f
PVDF	PVDF	1000	1490	34 to 200	1 to 93	1.57	7.64							

- a. USDA Dairy acceptance requires the use of a clean-in-place-system.
- b. Canada Food Inspection Agency
- c. Australian Quarantine Inspection Service


• See "Friction factors" (page 31)

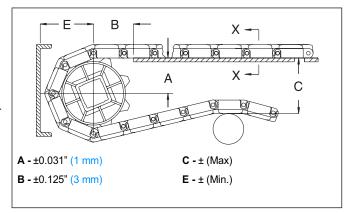

- d. Japan Ministry of Health, Labour, and Welfare
- e. MAF-New Zealand Ministry of Agriculture and Forestry. MAF acceptance requires the use of a clean-in-place system.
- f. European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

		Sprocket an	d Support Quantity Refe	ort Quantity Reference						
Belt Wid	dth Range ^a	Minimum Number of		Wearstrips						
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway						
12	305	3	2	Minimum 3 in. (76.2 mm) diameter rollers.						
24	610	6	4							
36	914	9	6							
48	1219	12	8							
60	1524	15	10							
72	1829	18	12							
84	2134	21	14							
96	2438	24	16							
		dd Number of Sprockets ^c at 02 mm) Ç Spacing								

- a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 6 in. (152.4 mm). If the actual width is critical, consult Customer Service.
- b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
- c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Center Sprocket Offset chart for lock down location.

							Split S	prock	cet Data	1
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes			
Teeth (Chordal	Pitch Dia.	Pitch Dia.	Outer Dia.	Outer Dia.	Hub Width	Hub Width	U.S. Siz	zes	Metric S	izes
Action)	in.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
20	6.5	165	2.94	75	2.98	766	3-7/16	2.5		
(1.23%)							2-7/16, 2- 11/16			
25	8.1	206	3.75	95	3.78	96	3-7/16	2.5		
(0.8%)							2-7/16, 2- 11/16			

a. Contact Customer Service for lead times.

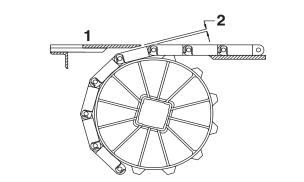


Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Conveyor frame dimensions are established using the top of the roller as the top of the belt and the bottom of the module as the bottom of the belt. "B" dimension is based on a 0.5 in. (12.7 mm) thick carryway.



Sprocket Description		A		E	3	(2	I	E	
Pitch D	Pitch Diameter No. Teeth Range (Bottom to Top)		in.	mm	in.	mm	in.	mm		
in.	mm	No. reem	in.	mm	"".		111.	mm	111.	mm
	FLUSH GRID									
6.5	164	20	2.94-2.98	75-76	2.35	60	6.46	164	3.54	90
8.1	205	25	3.75-3.78	95-96	2.66	67	8.06	205	4.34	110

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Ga	р		
Pitch Diameter		No. Teeth	in		
in.	mm	No. reem	in.	mm	
6.5	164	20	0.040	1.0	
8.1	205	25	0.032	0.8	

Center Sprocket Offset					
Number of Links Offset					
	in.	mm			
even	0.5	12.7			
odd	0.5	12.7			

SQUARE SHAFTS

MACHINED TO CUSTOMER SPECIFICATIONS

After the stock is cut to length, the raw shaft is precision straightened. The bearing journals are turned, followed by the cutting of retainer ring grooves, keyways and chamfers*. The final step is a thorough, quality control inspection before shipping. Contact Customer service for a form to fill in specifying shaft dimensions.

*If the shaft is to operate under high belt loads, retainer ring grooves are not recommended. Self-set or split heavy-duty retainer type rings are recommended in these cases. Contact Technical Support Group for retainer recommendations.

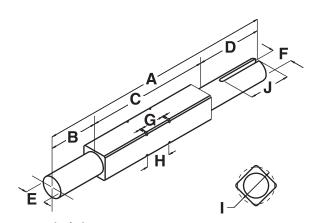


Fig. 2-12 Shaft dimensions

DIMENSIONS REQUIRED:	DIMEN	ISIONS	REQUI	RED:
----------------------	-------	--------	--------------	------

A - LENGTH, overall

- LENGTH, bearing-end journal

C - LENGTH, square section

keyway dimensions

D - LENGTH, drive-end journal and I - DIAMETER, ring groove

E - DIAMETER, bearing journal

- DIAMETER, drive-end journal

- WIDTH, retainer ring groove

H - WIDTH, sprocket hub

J - LENGTH of keyway

SHAFTS AVAILABLE FROM INTRALOX USA ^a SHAFT TOLERANCES IN INCHES					
Square Size	Aluminum (6061-T6)	Carbon Steel (C-1018)	Stainless Steel (303)	Stainless Steel (316)	
5/8 in.	N/A	+0.000 -0.003	+0.000 -0.004	+0.000 -0.004	
1 in.	+0.003 -0.003	+0.000 -0.003	+0.000 -0.004	N/A	
1.5 in.	+0.003 -0.003	+0.000 -0.003	+0.000 -0.006	+0.000 -0.006	
2.5 in.	N/A	+0.000 -0.004	+0.000 -0.008	+0.000 -0.008	
3.5 in. ^b	N/A	+0.000 -0.005	+0.010 -0.020 (304 CR)	N/A	

Consult Intralox for shafts longer than 12 ft.

SHAFTS AVAILABLE FROM INTRALOX EUROPE ^a SHAFT TOLERANCES IN MM						
Square Size	Carbon Steel (KG-37)	Stainless Steel (304)				
25 mm	+0.000 -0.130	+0.000 -0.130				
40 mm	+0.000 -0.160	+0.000 -0.160				
60 mm	+0.000 -0.180	+0.000 -0.180				
65 mm	+0.000 -0.180	+0.000 -0.180				
90 mm	+0.000 -0.220	+0.000 -0.220				

a. Consult Intralox for shafts longer than 3 m.

SHAFT DIMENSIONS AND TOLERANCES						
Shaft	Retainer Ring Groove and Chamfer Dimensions					
Size	Groove Diam.	Width	Chamfer ^a			
5/8 in.	0.762 ± 0.003 in.	0.046 + 0.003/- 0.000 in.	0.822 ± 0.010 in.			
1 in.	1.219 ± 0.005 in.	0.056 + 0.004/- 0.000 in.	1.314 ± 0.010 in.			
1.5 in.	1.913 ± 0.005 in.	0.086 + 0.004/- 0.000 in.	2.022 ± 0.010 in.			
2.5 in.	3.287 ± 0.005 in.	0.120 + 0.004/- 0.000 in.	3.436 ± 0.010 in.			
3.5 in.	4.702 ± 0.005 in.	0.120 + 0.004/- 0.000 in.	4.850 ± 0.010 in.			
25.4 mm	30 ± 0.1 mm	2.0 + 0.15/- 0.00 mm	33 ± 0.25 mm			
40 mm	51 ± 0.1 mm	2.5 + 0.15/- 0.00 mm	54 ± 0.25 mm			
60 mm	77.5 ± 0.1 mm	3.5 + 0.15/- 0.00 mm	82 ± 0.25 mm			
65 mm	85 ± 0.1 mm	3.5 + 0.15/- 0.00 mm	89 ± 0.25 mm			
90 mm	120 ± 0.1 mm	4.5 + 0.15/- 0.00 mm	124 ± 0.25 mm			

Note: some instances, the retainer ring grooves will be offset from the shaft center. See "Retaining sprockets" (page 319)

Shaft must be chamfered for Series 200, 400 and 800 molded sprockets to

TOLERANCES (Unless otherwise specified)

OVERALL LENGTH $< 48 \text{ in.} \pm 0.061 \text{ in.} (< 1200 \pm 0.8 \text{ mm})$

 $> 48 \text{ in.} \pm 0.125 \text{ in.} (> 1200 \pm 1.2 \text{ mm})$

- 0.0005 in./- 0.003 in. (Øh7 vlgs. NEN-ISO JOURNAL DIAM.

KEYWAY WIDTHS + 0.003 in./- 0.000 in. (+ 0.05/- 0.00 mm)

SURFACE FINISHES

63 microinches (1.6 micrometers) **JOURNAL** OTHER MACHINED 125 microinches (3.25 micrometers)

SURFACES

Unless otherwise specified — USA keyways are for parallel square keys (ANSI B17.1 - 1967, R1973).

Metric keyways are for flat, inlaid keys with round ends (DIN 6885-A).

b. 3.5 in.carbon steel shafts can be nickel plated for corrosion resistance.

ON 2

RETAINER RINGS/CENTER SPROCKET OFFSET

STANDARD RETAINER RINGS

- **STANDARD RETAINER RINGS** are available in sizes to fit 1.5 in. and 2.5 in. square shafts.
- Standard Retainer Rings are made from Polysulfone.

PRODUCT LINE

- The temperature range of Polysulfone is -125 °F to 300 °F (-98 °C to 149 °C).
- Standard Retainer Rings require grooves identical to those used for Stainless Steel Retainer Rings on 1.5 in. and 2.5 in. shafts (see groove chart in Stainless Steel Retainer Ring section for information).
- Standard Retainer Rings have the following restrictions:

Standard Retainer Ring Restrictions						
Detainer Dina	Standard R	etainer Rings v	vill NOT work w	ith the following	g sprockets	
Retainer Ring Size	Series	Pitch Diameter		Bore Size		
	Series	in.	mm	in.	mm	
1.5 in.	400	4.0	102	1.5	40	
	1600	3.2	81	1.5	40	
2.5 in.	400	5.2	132	2.5	40	
	1100	3.1	79	2.5	40	

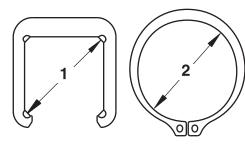
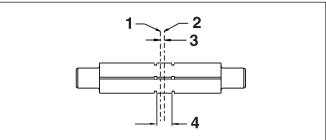


Fig. 2-13 Retainer rings

- 1. Ring Groove Diameter for Polysufone Retainer Rings
- 2. Ring Groove Diameter for Steel Retainer Rings
- **STAINLESS STEEL RETAINER RINGS** are available to fit 5/8 in., 1.0 in., 1.5 in., 2.5 in., 3.5 in., 25.4 mm, 40 mm, 60 mm, 65 mm, and 90 mm square shafts.
- The following ANSI Type 3AMI rings, conforming to MIL SPEC R-2124B are available

Shaft Sizes	t Sizes Groove Width Groove Diameter				
	INTRALOX USA				
5/8 in.	0.046 in.	0.822 in.			
1 in.	0.056 in.	1.219 in.			
1.5 in.	0.086 in.	1.913 in.			
2.5 in.	0.120 in.	3.287 in.			
3.5 in.	0.120 in.	4.702 in.			
	INTRALOX EUROPE	Ē			
(25.4 mm)	(2.0 mm)	(30 mm)			
(40 mm)	(2.5 mm)	(52 mm)			
(60 mm)	(3.5 mm)	(80 mm)			
(65 mm)	(3.5 mm)	(85 mm)			
(90 mm) ^a	(4.5 mm)	(120 mm)			


a. 90 mm retainer rings are galvanized steel only.

• Standard Retainer Rings have the following restrictions:

Stainless Steel Retainer Ring Restrictions				
D	Stainless Steel Retainer Rings will NOT work with the following sprockets			
Retainer Ring Size	Series	Pitch Diameter ^a		
3 - 1	Conco	in.	mm	
1.219 in.	900	2.1	53	
1.219111.	1100	2.3	58	

a. To lock down the Series 900 2.1 in. (53 mm) and (58 mm) pitch diameter sprockets, a set screw, placed on each side of the sprocket, is required. Contact Intralox Sales Engineering for more information.

Locked Sprocket position on the shaft

- 1 -Centerline of shaft
- 3 -Offset
- 2 -Centerline of sprocket
- 4 -Sprocket width

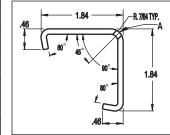
Center Sprocket Offset						
Series	Number of Links	Off	Max. Sprocket Spacing			
		in.	mm	in.	mm	
100	even	0	0	6	152	
100	odd	0.12	3	6	152	
200	even/odd	0	0	7.5	191	
200 RR	even/odd	0.09	2.3	7.5	191	
400	even	0	0	6	152	
400	odd	0.16	4	6	152	
400 RT, ARB, TRT		See botte	om of chart.			
800	even/odd	0	0	6	152	
800 RR	even	3	76	6	152	
000 KK	odd	0	0	6	152	
850	even/odd	0	0	6	152	
900	even	0	0	4	102	
	odd	0.16	4	4	102	
1000	even/odd	0	0	6	152	
	even (whole)	0	0	4	102	
	odd (whole)	0.5	12.7	4	102	
1100 ^a	even/odd (0.5 in. 12.7 mm increments)	0.25	6.35	4	102	
	even (whole)	0.19	4.8	4	102	
1100 EZ	odd (whole)	0.31	7.9	4	102	
Tracking Sprockets	even/odd (0.5 in. 12.7 mm increments)	0.06	1.52	4	102	
1200		200 section in the or call Custome		6	152	
1400	even	0	0	6	152	
1-100	odd	0.5	12.7	6	152	
1400 FG		00 section in the or call Custome		6	152	
1500		500 section in the		6	152	
	Instructions	or call Custome	r Service.	6	152	
1600	even/odd	0	0	4	102	
1650	even/odd	0	0	4	102	
1700	even odd	0.5	12.7	- 5	127	

PRODUCT LINE

	Center Sprocket Offset							
Series	Number of Links	Off	set	Max. Sprocket Spacing				
		in.	mm	in.	mm			
1800	even/odd	0	0	6	152			
1900	See Series 19 Instructions	3	76					
2200 ^{cb}	even	0.25 to the left	6.4 to the left	4	102			
2200	odd	0.25 to the right	6.4 to the right	4	102			
	even	0.125 to the left	3.2 to the left	6	152			
2400 ^{cb}	odd	0.125 to the right	3.2 to the right	6	152			
2600	even/odd	0	0	8	203			
2700	even/odd	0	0	8	203			
9000	even/odd	0.5	12.7	4	102			
	Number of Rollers per row				•			
400 RT, ARB,	even	0	0	6	152			
TRT	odd	1	25.4	6	152			

- a. The 8 and 12 tooth steel sprockets can be placed on belt centerline.
- b. When determining number of links, drop the 0.5 link
- c. Assuming belt is running in preferred direction

SELF-SET RETAINER RINGS


•SELF-SET RETAINER
RINGS are available to fit 1.0 in.,
1.5 in., 2.5 in., 3.5 in., 40 mm,
60 mm, and 65 mm shafts.

- •Retainer Rings are made from non corrosive 316 stainless steel.
- •There is no need for machined grooves on the shaft and the shaft does not need to be

removed to install these retainer rings.

- Self-Set Retainer Rings are USDA-FSIS accepted.
- Self-Set Retainer Rings snap into place on the square shaft and are fixed in position with a unique set screw that cannot fall out of the retainer ring during operation.
- The shaft must have chamfered edges for the retainer ring to work properly.
- Self-Set Retainer Rings are not recommended in applications where high lateral forces are to be expected.
- Self-Set Retainer Rings have the following restrictions:

Self-Set Retainer Ring Restrictions				
	Self-Set Retainer Rings will NOT work with the following sprockets			
Retainer Ring Size	Series	Pitch Diameter		
9		in.	mm	
	100	2.0	51	
1.0 in.	900	2.1	53	
	1100	2.3	58	
	900	3.1	79	
40 mm	1100	3.1	79	
	1600	3.2	81	
65 mm	400	5.2	132	

A -Custom set screw, fully inserted, head first, from this side

ROUND SHAFT RETAINER RINGS

- **HEAVY DUTY RETAINER RINGS** are available to fit 0.75 in., 1.0 in., 20 mm, and 25.4 mm round shafts.
- Heavy Duty Retainer Rings are made of stainless steel.
- Heavy Duty Retainer Rings are for use with the Series 1100 1.6 in. (41 mm) and 2.3 in. (58 mm) pitch diameter sprockets.

•These retainer rings do not require a groove for placement, they stay in place using friction (It is very important that grooves are not used on round shafting, as this will cause fatigue and shaft failure).

SPLIT HEAVY-DUTY RETAINER RINGS

• **SPLIT COLLAR RETAINER RINGS** are available to fit 1.5 in., 2.5 in., 40 mm and 60 mm square shafts.

- The retainer rings are made from 304 Stainless Steel.
- •For use in applications with high lateral loads on the sprockets.
- •These retainer rings do not require the shaft to be chamfered and the shaft does not have to be removed, providing ease of installation.
- Torque specifications for the retainer rings are as follows:
 1.5 in. and 40 mm: 90 in-lbs (10.2 N-m)
 2.5 in. and 60 mm: 190 in-lbs (21.5 N-m)
- Split Collar Retainer Rings have the following restrictions:

Split Collar Retainer Ring Restrictions				
Split Collar Retainer Rings will NOT work wi			he following sprockets	
Retainer Ring Size	Series	Pitch Diameter		
		in.	mm	

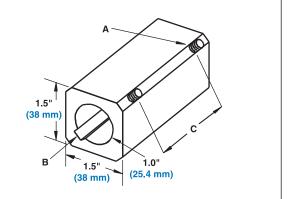
SECTION 2

PRODUCT LINE

Split Collar Retainer Ring Restrictions				
	400	4.0	102	
	900	3.1	79	
	900	3.5	89	
1.5 in. and 40 mm	1000	3.1	79	
	1100	3.1	79	
	1100	3.5	89	
	1600	3.2	81	
	400	5.2	132	
2.5 in. and 60 mm	1100	4.6	117	
	2600	5.2	132	
	2700	5.2	132	

ROUND BORE ADAPTERS

Sprocket inserts are available to adapt 1.5 in. square bore sprockets to use 1 in. diameter shafts. They are only recommended for lightly loaded belts or for narrow belt widths, up to 18 in. (460 mm).


Adapters are made in glass-filled polypropylene for strength and chemical resistance. However, these adapters are not to be used with split or abrasion resistant sprockets.

Two adapter sizes are available - 2.5 in. (64 mm) and 3.5 in. (89 mm) long. Set screws are provided to retain the sprockets on the adapters and to lock the center sprocket to the shaft. The 3.5 in. (89 mm) adapter has a third tapped hole to accommodate a range of hub widths. Refer to the table at right to determine which adapter to use with a given sprocket hub width.

For certain sprocket hub width/adapter size combinations, more than one sprocket can be placed on each adaptor. See the Round Bore Adapter Selection Table under the sprocket/adapter column for more information.

The 2.5 in. (64 mm) adapter has a torque limit of 875 in-lb (10,000 mm-kg). The 3.5 in. (89 mm) adapter is limited to 1200 in-lb (13,800 mm-kg). The operating temperature limits are between 45 °F (7 °C) and 120 °F (50 °C).

Round Bore Adapters are not for use with Split Sprockets or Abrasion Resistant Sprockets.

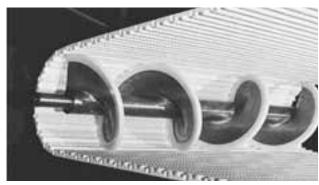
- A 1/4" 20 × 5/8" Set Screws (UNC Threads)
- **B** Keyway 0.25" × 0.125" (6mm × 3mm)
- C Gap between set screws:

2.5" (64 mm) Adaptor

1.5" (38 mm) Gap

3.5" (89 mm) Adaptor

2.5" (64 mm) Gap


Fig. 2-14 Round bore adapter

	Round Bore Adapter Selection Table ^a						
Sprocket		Center Locked Sprod		d Sprocket	Flo	ating Sp	rockets
Hub Widths		Adapter Size		Sprockets/	Adapte	r Sizes	Sprockets/
in.	mm	in.	mm	Adapter	in.	mm	Adapter
0.75	19	2.5	64	2	2.5	64	1
1.00	25	2.5	64	1	3.5	89	1
1.25	32	3.5	89	2	3.5	89	1
1.50	38	2.5	64	1	3.5	89	1
2.50	64	3.5	89	1	3.5	89	1

a. Spacers may be needed to lock down center sprockets on adapters.

SECTION 2

SCROLL IDLERS

Scrolls from Intralox may be used in applications where the drive end shaft and sprockets must be kept clean. The curved, flighted surfaces of the scroll direct debris away from the belt center, toward the edges, where it can fall harmlessly to the floor or receptacle.

Intralox offers scrolls in two nominal diameters: 6 in. (152 mm) and 9 in. (229 mm). Flight pitch, the axial distance for the flight to sweep through a full circle, is also 6 in. (152 mm) and 9 in. (229 mm), respectively. Since the scroll is also supporting the idle end of the belt, each nominal diameter has an associated minimum scroll length to insure proper belt support. For very narrow belts, or for extra support, a double-flighted scroll is available. All scrolls are mounted on a 2.5 in. (63.5 mm) diameter round shaft. Maximum journal diameter is 2.5 in. (63.5 mm) and minimum journal length is 2 in. (50.8 mm).

SCROLL DIMENSIONS, in. (mm)				
Nominal Diameter	Actual Diameter	Min. Single-Flighted Scroll Length ^a	Min. Double-Flighted Scroll Length ^a	
6 (152)	6.7 (170)	12.5 (318)	6.5 (165)	
9 (229)	9.7 (246)	18.5 (470)	9.5 (241)	

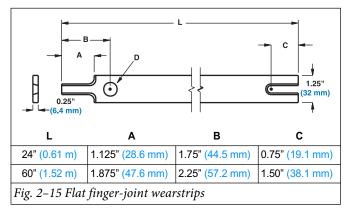
a. Exclusive of Journals.

Intralox scrolls are offered in carbon and stainless steel materials. Carbon steel scrolls are treated and painted for protection. All scrolls have a thick section of UHMW wearstrip attached to the flight edges. Stainless steel scrolls with a polished weld bead are available for USDA-FSIS applications.

Scrolls from Intralox may be used in applications where excessive amounts of debris may hamper the performance of sprockets or possibly damage the belt.

Position the scroll idler assembly in the conveyor frame so the "V" at the center of the scroll (where the left and right flights meet) points in the direction of belt travel. Adjust the shaft take-ups, if there is one, to have even tension on both sides.

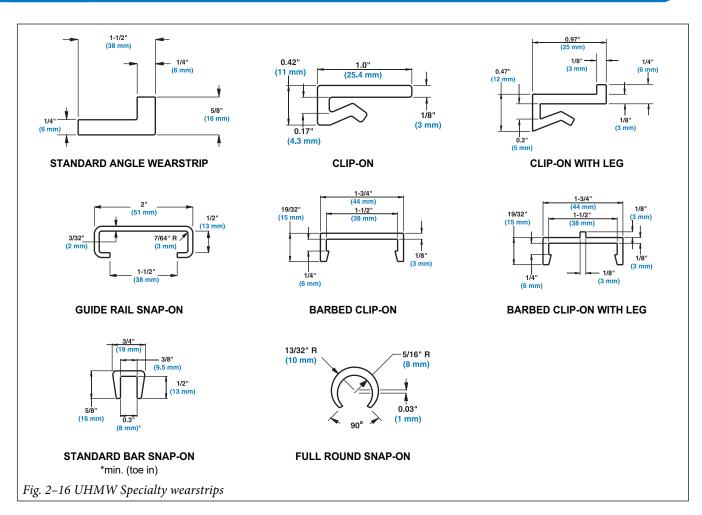
	Flight Material			
SCROLL FEATURES	Carbon Steel	Stainless Steel	Stainless Steel USDA-FSIS	
6 in. (152 mm) Scroll Size	•	•	•	
9 in. (229 mm) Scroll Size	•	•	•	
Intermittent Welds	•	•		
Continuous, Polished Welds			•	
UHMW Flight Edging	•	•	•	
Primer Gray Paint	•			

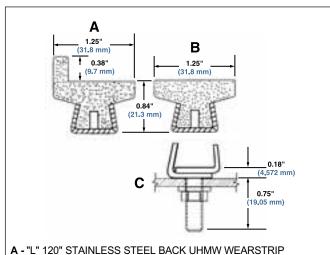

Intralox scrolls have no built-in tracking ability. It may be necessary to use side mounted wearstrips on the idle end.

WEARSTRIPS

FLAT WEARSTRIPS

STANDARD FLAT WEARSTRIPS are available in UHMW (Ultra High Molecular Weight), HDPE (High Density Polyethylene) and Nylatron (a Molybdenum-filled nylon). UHMW and HDPE wearstrips measure 0.25 in. (6 mm) thick \times 1.25 in. (32 mm) wide \times 120 in. (3 m). Nylatron wearstrips measure 0.125 in. (3 mm) thick \times 1.25 in. (32 mm) wide \times 48 in. (1.2 m). UHMW and HDPE wearstrips are FDA and USDA-FSIS compliant for direct food contact. Nylatron wearstrip is not FDA or USDA-FSIS accepted for food applications.


FLAT FINGER-JOINT WEARSTRIPS have a notched end design which provides overlapping section for continuous support. UHMW wearstrips are available in 24 in. (0.61 m) and 60 in. (1.5 m) lengths. HDPE wearstrip is available in 24 in. (0.61 m) lengths. Fasteners are supplied.


ANGLE AND CLIP-ON WEARSTRIPS

Intralox also offers a variety of angle and clip-on wearstrips. All of the clip-on wearstrips styles come in 120 in. (3 m) lengths. These wearstrips are designed to attach directly to the conveyor frame without fasteners.

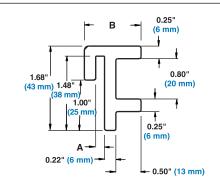
STAINLESS STEEL BACKED UHMW WEARSTRIP

- A L 120 STAINLESS STEEL BACK UNIVIV WEARSTRII
- B "T" 120" STAINLESS STEEL BACK UHMW WEARSTRIP
- C SELF TIGHTENING STAINLESS STEEL WEARSTRIP CLAMP WITH NUT -5/16-18 UNC

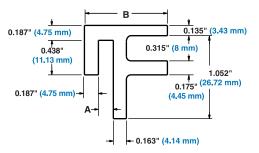
Fig. 2-17 Stainless steel backed UHMW wearstrips

- Stainless steel backed UHMW wearstrip can be used to create a rigid belt carryway surface on any frame with cross members.
- Stainless steel backed UHMW wearstrip is mounted to cross members with a self tightening stainless steel clamp with nut (self tightening stainless steel clamp with nut sold separately).
- Can be installed in parallel, chevron or other configurations.
- Recommended for temperatures up to 160°F (71°C).
- Available in two profiles: Flat Wearstrip ("T") and "L" Wearstrip
- Available in 120 in. (3048 mm) lengths.
- Installation of wearstrips should allow for thermal expansion and contraction.
- Always chamfer or bend down the leading edges of any wearstrip.

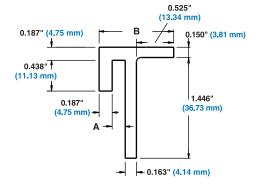
UHMW PRESSURE SENSITIVE TAPE

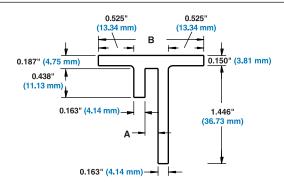

Intralox offers UHMW self-adhering wearstrip tape in rolls of 54 ft. (16.5 m). This tape can be used for quick and easy conversion of steel wearstrips to a lower friction UHMW wearstrip. The 1 in. (25.4 mm) wide and 2 in. (50.8 mm) wide tape is available 0.010 in. (0.25 mm) and 0.030 in. (0.76 mm) thick.

CUSTOM WEARSTRIPS

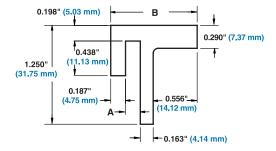

RADIUS BELT WEARSTRIPS

All of the Radius Belt wearstrips are available in natural UHMW and self-lubricating, grey TIVAR, oil-filled UHMW.


The Angle and Center Rail wearstrips utilize the EZ Clean design. All wearstrips are available in either 1/8 in. (3.2 mm) or 3/16 in. (4.7 mm) sizes. S2400 available in UHMW only



STANDARD EDGE, HOLD DOWN WEARSTRIP



TABBED EDGE, HOLD DOWN WEARSTRIP

RADIUS BELT WEARSTRIP, CENTER RAIL HOLD DOWN WEARSTRIP

RADIUS BELT WEARSTRIP, SERIES 2400, HOLD DOWN GUIDE WEARSTRIP

Wearstrip Dimensions				
	A (Nominal)			
		1/8" (3.2 mm)	3/16" (4.7 mm)	
В	Standard Edge	1.00" (25.4 mm)	1.13" (29 mm)	
	Tabbed Edge	1.00" (25.4 mm)	1.06" (27 mm)	
	Angle	1.00" (25.4 mm)	1.06" (27 mm)	
	Center Rail	1.56" (40 mm)	1.56" (40 mm)	
	S2400 Hold Down Guide	1.03" (26 mm)	1.09" (28 mm)	

RADIUS BELT WEARSTRIP, ANGLE HOLD DOWN WEARSTRIP

Fig. 2–18 120" UHMW RADIUS BELT CUSTOM WEARSTRIPS

PUSHER BARS

Accumulation tables are most often used in the beverage industry, allowing upstream production machinery to operate continuously and economically in the event that some downstream machinery stops the flow of the product. These tables act as a buffer to absorb the product overflow until the downstream problem is rectified. The principal function of a

pusher bar is to move the last few rows of product off the accumulation table, past the dead plate area and onto the primary conveyor lines. Pusher bars rest on the accumulation table, which must use a Raised Rib style belt (Series 100, 400 and 900).

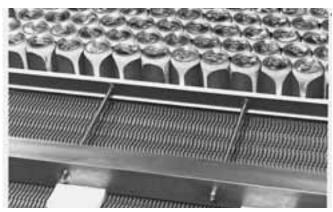
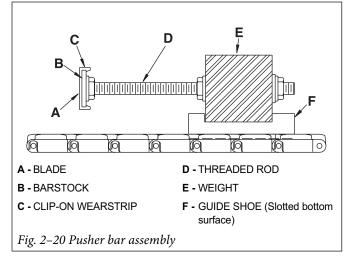
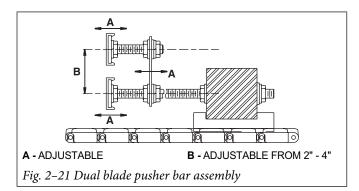
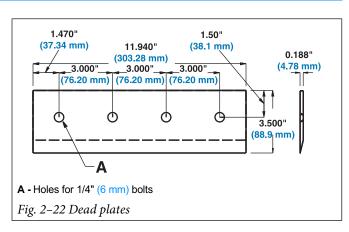



Fig. 2-19 Pusher bar side view


The bar is a 2.5 in. (63.5 mm) square stainless or carbon steel shaft which rides in a number of slotted UHMW guide shoes. The shoes are slotted on the bottom to mesh with the ribs of the belt and keep the bar aligned, perpendicular to the direction of belt travel. The shoes bear the entire weight of the pusher bar, so it is recommended that wearstrips be placed to support the belt directly under the shoes.

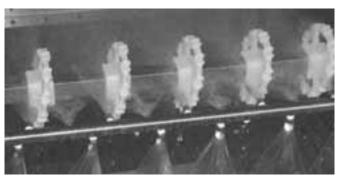
The blade of the pusher bar actually does the pushing. It can be specified in 24 in. (610 mm) to 120 in. (3.05 m) lengths and consists of a rigid steel bar capped with UHMW wearstrip, so as not to mar or damage the product. The blade is set off from the weighted shaft by threaded steel rods, making the amount of offset adjustable to individual needs.


A dual blade pusher bar is also available for tall or contoured products. The upper blade of this configuration is adjustable up and down and can be extended past or retracted further back from the lower blade.

Adjustment of the pusher bar is dependent upon: 1) placement of the device which limits the pusher bar's forward travel, and 2) dimensions of the product being conveyed. Standard offset is approximately equal to the length of the finger plate to be used: 5.75 in. (146 mm) for **Series 100**, 7.5 in. (191 mm) for **Series 400** and 6.5 in. (165 mm) for **Series 900**.

DEAD PLATES

Intralox offers UHMW dead plates with operating temperature limits of -100 °F (-73 °C) to 180 °F (82 °C).



EZ CLEAN IN PLACE SYSTEM (CIP)

Compatible with most conveyors, Intralox's new EZ Clean In Place (CIP) System cleans belts quickly, effectively, and consistently while minimizing water usage.

Intralox's new EZ Clean In Place System features a spray bar optimally located to increase and expedite debris removal, plus a custom-engineered spray pattern designed to thoroughly clean the belt underside, sprockets, and shaft. The system mounts within the conveyor frame behind the conveyor shaft and sprays the belt at 3 separate locations. Fan nozzles spray through the open belt hinges below and above the shaft as the belt travels around the sprockets. High impact nozzles spray the belt underside along the belt drive bars to maximize the debris channeling effect built into Intralox's EZ Clean belts. Cleaning is further opimized when used in conjunction with Angled EZ Clean sprockets.

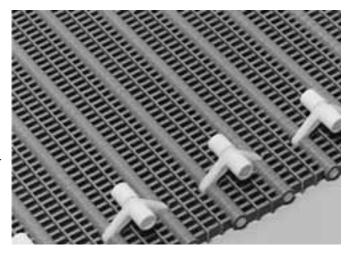
The CIP can be installed on drive or idle end (drive preferred). It is made of 303/304 stainless steel, with highly polished surfaces. The minimum water pressure recommended is 150 PSI.

HOLD DOWN ROLLERS

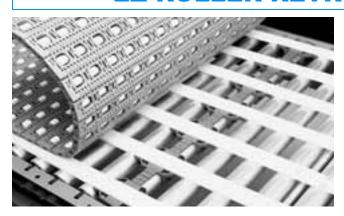
Hold down roller assemblies can be used in place of hold down shoes or rails on wide elevating conveyors. On typical elevating conveyors, the flights have a notch in the center of the belt so that a hold down rail or shoe can be used to keep the belt on the conveyor frame. Product loss or damage from these shoes is an inevitable side effect.

Standard roller assemblies have a bracket made of acetal, with polypropylene rollers and rods, and are available for the following belt styles:

Series 200 — Flush Grid, Open Grid, Open Hinge, Flat Top and Perforated Flat Top


Series 400 — Flush Grid, Open Hinge and Flat Top

Series 800 — Flat Top and Perforated Top.


Hold down roller assemblies are built securely into the underside of the belt, held in place by the belt's hinge rods. The rollers ride in tracks that anchor the belt in position as it enters the incline of the conveyor. These assemblies can also be used in place of traditional hold down rails or shoes on the side of the conveyor.

Hold down rollers can be placed as frequently as every other belt row, a minimum of 4 in. (102 mm) apart to a recommended maximum of 24 in. (610 mm) apart. Normally, 8 in. (203 mm) spacing, every fourth row is sufficient. Sprocket

size is limited by the rollers protruding from the bottom surface of the belt. In order to keep the rollers from coming into contact with the shaft, when using a 1.5 in. (or 40 mm) square shaft, the minimum allowable sprocket pitch diameter is 6.4 in. (163 mm). When using a 2.5 in. (or 60 mm) shaft, the minimum sprocket pitch diameter allowable is 7.7 in. (196 mm). Refer to "Section three: Design guidelines" (page 317), for more detailed information.

EZ ROLLER RETROFIT™ PRODUCTS

FOR STRAIGHT CONVEYOR CARRYWAYS (INCLUDING INCLINES & DECLINES):


Snap-on version - The Intralox EZ Roller Retrofit Snap-On Component includes a section of 1.5 in. (38.1 mm) W × 60 in. (1524.0 mm) L × 0.375 in. (9.5 mm) thick, UHMW wearstrip pre-attached to a composite polypropylene patented clamp. It quickly and easily snaps onto existing 1.9 in. (48 mm), 50 mm, and 2.5 in. diameter

rollers without the need for tools or any modification to the rollers or conveyor, forming a secure carryway for a new Intralox belt. The wearstrips are installed side by side across the full width of the conveyor, and end to end, down the length of the conveyor. The tongue and grooved ends allow for thermal expansion and contraction. The side by side placement limits the units' lateral movement and helps provide a full bed of support for the conveyor belts. The adjustable spacing tabs of the components makes them easily adaptable to most conveyor widths. Consult Intralox to determine how many rows of wearstrip are recommended for your application.

Bolt-on version - When roller removal is desired, the EZ Roller Retrofit Bolt-On Component is recommended. Sturdy 5 foot sections are pre-assembled to save labor, and bolt into existing roller 7/16 in. (11 mm) hex holes (only eight

bolts per section required). A chevron wearstrip pattern increases belt life.

Drop-in pan - For Series 400 Angled Roller Belt application, the ARB Carryway Drop-In Pan is available. It consists of drop-in carryway

sections that assemble together to form a flat and rigid surface for mounting wearstrip used to drive Series 400 Angled Roller Belt rollers. These components are designed to the customer's conveyor specifications and come complete with side and bottom wearstrips and all necessary monting hardware.

Skate Wheel - Part of the Intralox EZ Roller Retrofit™ family, the Skate Wheel Retrofit Component includes a section of UHMW

wearstrip 1.5 in. (38.1 mm) x 60 in. (1524.0 mm) long x 0.375 in. (9.5 mm) thick. It is quickly and easily assembled around 1-15/16 in. (49.2 mm) diameter, 5/8 in. (15.9 mm) wide skate wheels to form a secure carryway for a new Intralox belt. The adjustable spacing of the components makes them easily adaptable to most conveyor widths. Consult an Intralox representative to determine how many rows of wearstrip are recommended for your application.

FOR STRAIGHT CONVEYOR RETURNWAYS:

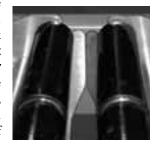
Intralox EZ Roller Retrofit Hanger Brackets create a returnway by providing a means to mount 1.9 in. (48 mm) and 2.5 in. rollers (salvaged during the retrofit) to the underside of the existing

conveyor frame. Rubber Returnway Rings, held to the rollers by friction, help provide quiet operation and increase the outside diameter to the optimum size for use as a return roller.

FOR CURVED CONVEYOR CARRYWAYS & RETURNWAYS:

The EZ Roller Retrofit Curved Component set consists of a pair of stainless steel bases with pre-attached wearstrips. They bolt to the top and bottom of the existing frame to create a carryway and returnway for the new Intralox belt. Each set is custom manufactured to match your turn angle, inside frame width, inside frame radius, belt series, and belt width. It connects to the EZ Retrofit straight sections on each side of the turn. It works with Series 2200 and Series 2400 radius belts to provide a complete "one belt" conveyor system. Call Customer Service for more information.

PRODUCT LINE


FOR CREATING NEW DRIVE AND IDLE ENDS:

Powered roller conveyor retrofits may require relocation of the drive unit. Intralox simplifies this work with the EZ Roller Retrofit Drop-In Drive and Idler

Components. These pre-assembled units are custom-made for your conveyors. Each includes a shaft, bearings, sprockets, and snub roller in a stainless steel frame which simply drops in and bolts down. Each drive/idle pair can save up to 10 hours of

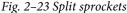
retrofit labor, enabling you to retrofit more conveyor in a given down time window

Nose-Roller Drop-In Drive and Idler Components are similar to the standard drop in components except that they are equipped with a 2 in. (51 mm) diameter nose roller to allow for tighter transfers between belt sections.

ABRASION RESISTANCE SYSTEM

Excessive rod and sprocket wear in abrasive applications can cause a number of undesirable conditions. Aside from the obvious effect of reduced belt life, there can be added difficulties in making repairs. A badly worn rod cannot be removed easily. Often, belt modules are damaged in the process. Worn rods also cause belt pitch to increase, which decreases sprocket engagement and, in turn, increases the wear rate on sprocket teeth. The belt may not run as smoothly as it should under these circumstances.

Intralox has developed stainless steel split sprockets and Abrasion Resistant (AR) hinge rods which enhance the performance of Intralox belts in abrasive or gritty environments. Rigorous testing shows that these AR components significantly outlast standard components and increase belt module life. Abrasive particles are less likely to


become imbedded in the harder AR material. Thus, the components themselves do not become abrasive surfaces wearing on the belt.

SPLIT SPROCKETS

Intralox Split Sprockets are an alternative to molded plastic sprockets for all **Series 100**, **400**, **800**, **900**, **1100**, and **1200** belts. Split Sprockets are constructed from FDA compliant materials, but are not USDA-FSIS accepted. Refer to the individual Shaft and Sprocket Data pages for detailed information.

The old style, all Stainless Steel Abrasion Resistant Sprockets, are still available as special order items. Contact Customer Service for lead-times.

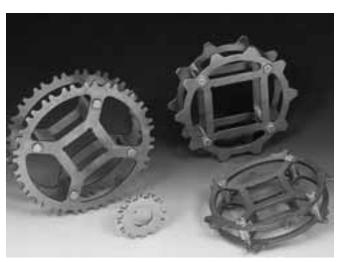


Fig. 2-24 Abrasion resistant (all steel) sprockets

ABRASION RESISTANCE HINGE RODS

The AR rods are stiffer than standard rods, so belt pull capabilities are not sacrificed. They are lighter, less expensive and are more flexible than steel rods. They also provide good chemical resistance, low friction, a wide operating temperature range and are FDA compliant for direct food contact.

In all belt styles which employ Intralox's snap-lock rod retention system, the AR rods are held in place with "rodlets" installed on both edges of the belt. Rodlets are short, headed rods (see "Fig. 2–25 Abrasion resistant rods and rodlets") which are also made of Abrasion Resistant material.

Belts that utilize a headless rod retention system or belts with SLIDELOX* do not require a head of any type (see below "Fig. 2–26 Series 1100 side view" and "Fig. 2–27 Series 1400 with Slidelox*").

Fig. 2-25 Abrasion resistant rods and rodlets

Fig. 2-26 Series 1100 side view

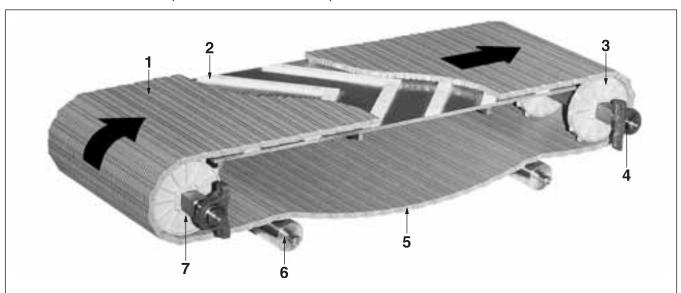
Fig. 2-27 Series 1400 with Slidelox®

SERIES	STYLE	ROD RETENTION SYSTEM
100	All Styles	Snap-Lock Rodlets
200	All Styles except Open Hinge	Thermally Deformed Rod Hole
400	All Styles except Open Hinge	SLIDELOX® - FG & RR Snap-Lock Rodlets - Flat Top
800	All Styles	Snap-Lock Rodlets
850	All Styles	Snap-Lock Rodlets
900	All Styles	Snap-Lock Rodlets
1000	All Styles	Series 1000 Headless
1100	Flush Grid	Series 1100 Headless
1200	All Styles	SLIDELOX®
1400	Flat Top	SLIDELOX®
1500	All Styles	Series 1500 Headless
1600	All Styles	Series 1600 Headless
1650	All Styles	Series 1600 Headless
1700	All Styles	SLIDELOX®
1800	Flat Top	Series 1800 Headless
1900	All Styles	Shuttleplug™
2200	Flush Grid	Series 2200 Headless
2400	Flush Grid	Series 2400 Headless
2600	All Styles	Series 2600 Headless
2700	All Styles	Series 2700 Headless
9000	All Styles	Series 9000 Headless

The SLIDELOX® rod retention system is a headless rod retention method. This system uses a shuttle plug to retain the rods during operation. The SLIDELOX® plug can be easily moved to the side when work on the belt is required.

To remove a rod after a belt has been in service for some time, apply a soapy solution or other lubricant to the belt hinge. This will help loosen any grit that has become trapped between the rod and the module.

If Abrasion Resistant rods are used in continuously wet, elevated temperature environments, they have a tendency to absorb water and expand in length and diameter. If an application requires an Abrasion Resistant rod in these conditions, contact Sales Engineering to determine the approximate expansion due to water absorption.

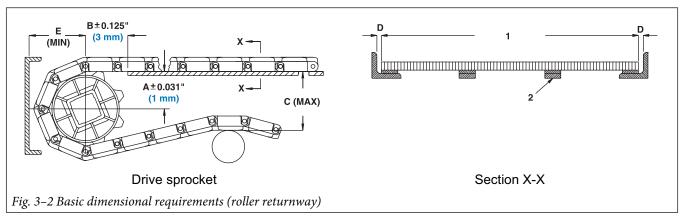

SECTION THREE: DESIGN GUIDELINES

After selecting a belt (series, style and material) and its representative of those in common use. There are many accessories, the conveyor frame must be designed. Intralox provides the following dimensional data and guidelines, based upon good design principles and practice, for use in designing new conveyor frames or adapting and retrofitting existing ones.

The illustration below identifies most of the components in a conventional, horizontal conveyor. The items shown are only

variations of components and design details. The designer must become familiar with those available in order to produce the most appropriate and economical conveyor.

Contact Customer Service to request the Belting Installation, Maintenance & Trouble Shooting **Guidelines** or to request any additional guidelines.


- 1 -Intralox belt
- 2 -Carryway (chevron wearstrips)
- 3 Drive shaft & sprocket
- 4 -Shaft bearings
- Fig. 3–1 Conventional conveyor components

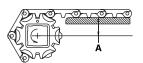
- 5 -Catenary sag
- 6 -Returnway rollers
- 7 -Idle shaft & sprockets

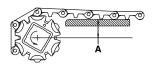
BASIC CONVEYOR FRAME REQUIREMENTS

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C", "D" and "E" in the illustrations and tables below should be implemented in any

design. Also, the conveyor should allow access to the side of the belt at some point for rod clearance during the installation, tensioning, or removal of the belt.

DIMENSION DEFINITIONS


A — The vertical distance between the centerline of the shaft and the top of the carryway.


The belt-to-sprocket engagement and end-off/end-on product transfers are affected by the "A" dimension and the amount of chordal action between the belt and sprockets. Chordal action occurs as each row of modules in a belt rises and falls as it engages the drive sprockets or disengages the idle sprockets. This effect is most pronounced in the large pitch belt/small pitch diameter sprocket combination, such as **Series 800** with 4.0 in. (102 mm) pitch diameter sprockets.

For small pitch diameter sprockets, the "A" dimension is given as a range to indicate when the belt will be horizontal at both the high and low points of the chordal action.

For large pitch diameter sprockets/small pitch belt combinations, the effects of chordal action are small and fall within the allowable tolerance. For these sprockets, a range for the "A" dimension is not necessary.

The bottom of the range is determined when the center of the module is at the top of the sprocket. At this point, this leading, engaged module is horizontal ("Fig. 3–3 Chordal effects -bottom of range"). As this row of modules rotates around the sprocket, the next row starts engaging the sprockets and is lifted above horizontal. It returns to horizontal as this row fully engages the sprockets.

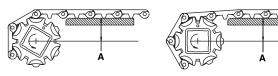

The row of engaging modules is raised above horizontal when the center of the hinge is at the top of the sprocket, but returns to horizontal as the center of the module passes the center of the sprocket.

Fig. 3-3 Chordal effects - bottom of range

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

The top of the range is determined when the center of the hinge, between two rows of modules, is at the top of the sprocket. At this point, the leading module is horizontal ("Fig. 3–4 Chordal effects - top of range"). As this row of modules engages the sprockets, the row drops below horizontal. It returns to horizontal as the leading edge of the next row starts to engage the sprockets. This arrangement

should not be used with the **Series 800** belts since the underside geometry of the modules may cause chatter on the ends of the wearstrip or wear plate.

The row of engaging modules is horizontal when the center of the hinge is at the top of the sprocket, but goes below horizontal as the center of the module passes the center of the sprocket.

Fig. 3-4 Chordal effects - top of range

The "A" dimension can be set at any point inside the given range. If an "A" dimension is selected, which is between the top and bottom of the range, the belt will both rise above horizontal and drop below horizontal as each row engages the sprockets.

B — The horizontal distance between the centerline of the shaft and the beginning of the carryway. This dimension assumes that a 0.5 in. (12.7 mm) thick carryway is used, allowing for a typical 0.25 in. (6.4 mm) support and 0.25 in. (6.4 mm) wearstrip. The carryway can be extended to within 0.5 in. (12.7 mm) of the centerline of the shaft if the supports extend between the sprockets "Fig. 3–10 Anti-sag configuration" (page 322).

C — The vertical distance between the top of the carryway and the top of the returnway rails or rollers. This should provide between 180° (min.) and 210° belt wrap around the drive sprockets. The listed dimensions will provide the minimum 180° wrap required for proper engagement.

D—The clearance between the edges of the belt and the side frame member, 0.25 in. (6.4 mm) min. It should be noted that the minimum edge clearance between side frames and the belt must be determined at the operating temperature of the belt. Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt. See "THERMAL EXPANSION AND CONTRACTION" (page 336) and "EXPANSION DUE TO WATER ABSORPTION" (page 337) sections to calculate the operating width of your belt at temperatures above ambient.

E — The minimum horizontal distance between the centerline of the shaft and any framework.

DRIVE GUIDELINES

Intralox square shafts provide maximum efficiency in driving the belt. The two primary advantages are: 1) the positive transmission of torque to the sprockets without keys and keyways, and 2) allowing lateral movement of sprockets to accommodate the inherent differences in thermal expansion or contraction between plastics and metals.

SHAFT SIZES AND MATERIALS

Intralox, LLC USA stocks square shaft materials in Aluminum (6061-T6), Carbon Steel (C-1018) and Stainless Steel (303 and 316) in the following sizes:

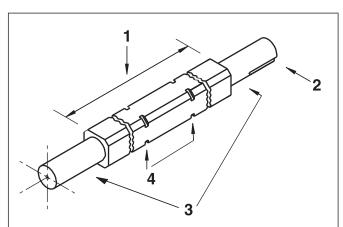
Aluminum: 1 in. and 1.5 in.

Carbon Steel: 5/8 in., 1 in., 1.5 in., 2.5 in., 3.5 in.

303 Stainless Steel: 5/8 in., 1 in., 1.5 in., 2.5 in., 40 mm and

60 mm

304 HR Stainless Steel: 3.5 in.


316 Stainless Steel: 1.5 in. and 2.5 in.

Intralox, LLC Europe offers square shaft materials in Carbon Steel (KG-37) and Stainless Steel (304) in the following sizes:

Carbon Steel: 25 mm, 65 mm and 90 mm.

Stainless Steel: 25 mm, 40 mm, 60 mm, 65 mm and 90 mm.

The correct shaft size for your application can be determined by calculations found in the "Belt Selection Instructions" (page 36), or from the formulas beginning on page 340. Typical shaft sizes and material properties are listed in "Table 8 SHAFT DATA" (page 351).

- 1 Square section length [Distance between bearings, less 1/4 in. (6 mm)]
- 2 Keyway for driver hub (not required on idle shaft)
- 3 Bearing journals
- 4 Retainer ring grooves

Fig. 3-5 Typical shaft features

DRIVE SHAFT TORQUE LOADING

An important consideration in the selection of shaft sizes is the torque loading that the drive shaft must absorb. The belt's pull, acting through the sprockets, introduces the torsional or twisting load on the drive shaft. Under any given set of conditions, i.e., product loading and frictional resistance, the belt pull will remain constant, but torque on the drive shaft will vary with the size of sprockets chosen. As the sprocket pitch diameter is increased, the torque on the shaft is also increased. Therefore, if a particular shaft size is desired, but the torque to be absorbed exceeds that recommended by "Table 9 MAXIMUM RECOMMENDED TORQUE ON DRIVE SHAFT" (page 351), recalculate the torque with the smaller sprocket if there is a smaller diameter sprocket available in your belt's series. To achieve the same belt speed, the rotational speed (RPM) must be proportionally greater with the smaller sprocket.

POWER REQUIREMENTS

The power needed to drive the belt can be calculated in the "Belt Selection Instructions" (page 36), or from the formulas beginning on page 340. It should be noted, this calculated

power does not include the power needed to overcome mechanical or other inefficiencies in the system. Since conveyor arrangements and power trains may consist of many possible choices, the following table may assist you in determining the amount of added power needed for your design.

MACHINERY ELEMENTS AVERAGE MECHANICAL EFFICIENCY LOSSES

	ELLIGITION FOODEO
Ordinary Sleeve Bearings	2% to 5%
Ball Bearings	1%
Gear Reducers:	
Spur or Helical Gears	
Single Reduction	2%
Double Reduction	4%
Triple Reduction	5%
Worm Gears	
Single Reduction	5%
Double Reduction	10% to 20%
Roller Chains	3% to 5%
V Belts	2% to 4%
Hydraulic Power Systems	(consult manufacturer)

Determine the total efficiency losses in the components to be used and use the calculated power to determine the required **Motor Power** as follows:

Motor Horsepower =
$$\frac{\text{Belt drive power}}{100\% - \text{Total } \% \text{ Losses}} \times 100$$

For example, if you determine the total efficiency losses in your system amount to 15% and your belt drive power was calculated to be 2.5 horsepower, the required motor horsepower can be found from:

Motor Horsepower =
$$\frac{2.5}{100 - 15} \times 100 = 2.94$$

Therefore, in this case, the appropriate motor power to drive this system would be 3 horsepower.

RETAINING SPROCKETS

It is usually necessary to *laterally retain only one sprocket* on each of the drive and idler shafts. This sprocket will provide the positive tracking necessary to keep the belt running properly between side frames of the conveyor. By allowing the other sprockets to move laterally, thermal expansion differences between the belt and frame are easily accommodated. By convention, Intralox recommends the sprocket adjacent to or on the belt's centerline be retained using retainer rings on both sides of the sprocket. When only two sprockets are used, retain the sprockets on the drive journal side of the conveyor.

In some cases, the "center" sprocket will be slightly offset from the centerline of the belt. In **Series 1100**, the center sprocket will be 0.5 in. (13 mm) off center when the belt width is an odd number of inches wide, e.g., 7 in. or 9 in. (or an odd multiple of 25.4 mm). **Series 2200** sprockets will always be 0.25 in. (6.4 mm) off center. If a Radius Belt Standard Edge or Tabbed Edge wearstrip is used to contain the **Series 2200**

belt up to the sprockets, it is not recommended that any sprockets be retained on the shaft. In this case, the wearstrip is used to maintain the belt's lateral position.

INTERMEDIATE BEARINGS

On wide belt systems or those under heavy tension loads, an additional bearing (or bearings) may be needed to support the center of the drive and idler shafts to reduce deflection to acceptable levels. Excessive drive shaft deflection will cause improper belt-to-tooth engagement, a condition which should be avoided.

When intermediate bearings are considered, the shaft deflection formulas are different from the one which applies to shafts supported by only two bearings. With a third bearing, *located in the center of the shaft*, the deflection formula (see page 342) is straightforward and easy to apply.

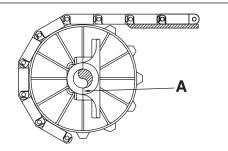
$$\mathbf{p}_3 = \frac{1}{185} \times \frac{\frac{W}{2} \times L_S^3}{E \times I}$$

$$= \frac{w \times L_S^3}{370 \times E \times I}$$

where: \mathbf{D} = Deflection, in. (mm)

w = Total shaft load, lb (kg)

 L_S = Shaft length between bearings, in. (mm)


E = Modulus of Elasticity, lb/in² (kg/mm²)

I = Moment of Inertia, in. (mm⁴)

However, when the third bearing is placed off center, or when more than three bearings are used, the analysis is so complicated that convenient general formulas for deflection cannot be given. A simpler approach is to allow the designer to determine a safe maximum span length, using the charts in Section 4. After calculating the TOTAL SHAFT LOAD, w, the maximum span for available shaft sizes and materials is easily determined. Tables 11A and 11B (page 353) are for Conventional Conveyors using two bearings and three or more bearings. Tables 11C and 11D (page 353) are the corresponding curves for Bi-directional and Pusher Conveyors.

Intermediate bearings usually are Split Journal Bearings. They should be mounted on the conveyor frame with the split of the bearing housing perpendicular to the direction of the belt travel. (Note: if the split is parallel with the belt travel, its load capacity is reduced significantly.) In cases requiring

intermediate bearings, it is prudent to utilize sprockets with the largest practical diameter because of the rather large housing dimensions. Otherwise, a bearing modification may be needed to allow it to fit the limited space available.

A -Split in bearing housing should be perpendicular to the direction of belt pull.

Fig. 3–6 Intermediate bearings recommended mounting arrangement

ROLLERS AS IDLE SHAFTS AND SPROCKET REPLACEMENTS

In many applications, idle shafts and their sprockets may be replaced by rollers made of steel pipe, supported by stub shafts. These pipe rollers can be considerably stiffer than a comparable length of solid, square shafting. For example, a 4 in. (102 mm) — Schedule 40 pipe and a 6 in. (152 mm) — Schedule 40 pipe have more than twice the stiffness of 2.5 in. (63.5 mm) and 3.5 in. (88.9 mm) square steel shafts, respectively. Therefore, in cases where loads are high and the belt is wide, the use of rollers such as these may eliminate the need for intermediate bearings to reduce shaft deflection to acceptable levels. Flanging or spooling of the ends of the rollers to retain the belt laterally is necessary in some cases.

Scroll idlers can also be used in place of idle sprockets. See "Scroll idlers" (page 308). Scroll idlers are used to help keep the returnway clean and free of debris.

SOFT STARTING MOTORS AND FLUID COUPLINGS

Rapid starting of high speed or loaded conveyors is detrimental to good belt and sprocket life. This will also cause adverse effects on the entire drive train. When the motor power exceeds 1/4 horsepower per foot of belt width (612 watts per meter), Intralox strongly recommends the use of soft starting electric motors or one of the several fluid couplings (wet or dry) presently available. These devices allow the driven conveyor to accelerate gradually to operating speeds, which is beneficial for all components.

BELT CARRYWAYS

Intralox belting can be supported in the load-bearing part of its travel by carryways of various arrangements. Since their primary purposes are to provide a lower friction running surface and to reduce wear on both the belt and the frame, it is wise to give careful consideration to this part of the design.

The carryway belt contact surfaces may be of metal, usually cold-rolled finished Carbon or Stainless Steel, or one of the

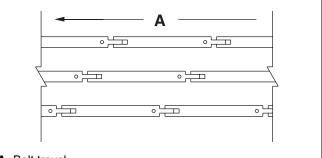
commonly used plastics available from Intralox. Please refer to the belt data pages in "Section two: Product line" (page 17), or **Tables 2A** (page 348) and **2B** (page 348) for frictional characteristics of each. Also refer to the wearstrip data (beginning on page 339) for a description of the plastic strips available from Intralox.

SOLID PLATE CARRYWAYS

These are continuous sheets of metal, UHMW or HDPE over which the belt slides. They extend the full width of the belt and almost the entire length between idler and drive sprockets. The plates may be perforated with slots or holes to allow for drainage and the passage of foreign material. In heavily loaded applications, this type of carryway surface is considered a good choice because of the continuous support it provides to the

WEARSTRIP CARRYWAYS

All wearstrips are available in Ultra High Molecular Weight (UHMW) Polyethylene. Certain styles are also available in High Density Polyethylene (HDPE) and Molybdenum-filled nylon (Nylatron).

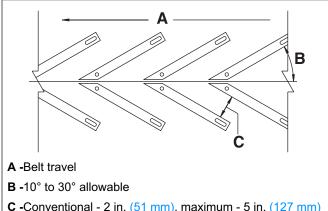

Wearstrip types and sizes

Intralox can provide wearstrips of three different types:

- Standard flat wearstrips are relatively thick, narrow, flat bars of UHMW, HDPE or Nylatron. UHMW and HDPE flat wearstrips are available in 0.25 in. (6.4 mm) thick \times 1.25 in. (31.8 mm) wide \times 10 ft. (3 m) lengths. Molybdenum-filled nylon (Nylatron) flat wearstrips are available in 0.125 in. (3.2 mm) thick \times 1.25 in. (31.8 mm) wide \times 8.5 ft. (2.6 m) lengths. The strips are applied directly to the frame and attached with plastic bolts and nuts in slotted holes. This allows the strips to expand and contract freely with temperature changes.
- Flat finger-joint wearstrips have a notched-end design ("Fig. 3-7 Straight, parallel wearstrip arrangement") which provides an overlapping section for continuous belt support without sharp edges. These 0.25 in. (6.4 mm) thick wearstrips are fastened in short lengths at the leading end only, with a 0.375 in. (9.5 mm) gap, to provide freedom for elongation caused by temperature changes. available in UHMW and HDPE.
- Angle and clip-on wearstrips normally are used in applications where belt edge protection is needed or lateral transfer is required. They are available in lengths of 10 ft. (3 m) in UHMW. In addition to the standard angle wearstrip, several specially **clip-on** or **snap-on** strips are available. These strips attach to the frame without the need of fasteners. Refer to page 308 for more information on available wearstrips.

Wearstrip arrangements

• Straight, parallel runners These supports consist of strips, either metal or plastic, placed on the frame parallel with the belt's travel. While relatively inexpensive to install, their disadvantage is that belt wear is confined to the narrow areas in contact with the strips. This arrangement is recommended, therefore, in low-load applications only.



A -Belt travel

Fig. 3-7 Straight, parallel wearstrip arrangement

• Chevron array By placing the strips in an overlapping "V" or Chevron array, the underside of the belt is supported across its full width as it moves along the carryway. Thus the wear is distributed evenly. The angled surfaces can be effective in removing gritty or abrasive material from the underside of the belt. A minimum 0.4 in. (10.2 mm) gap is recommended between the points of the wearstrip to reduce debris build up. This arrangement is also good for heavily loaded applications. By reducing the spacing between adjacent chevrons, the bearing load on the strips and the belt's unsupported span is decreased.

Standard flat wearstrips can be modified to form the Chevron array.

C -Conventional - 2 in. (51 mm), maximum - 5 in. (127 mm)

Fig. 3–8 Chevron wearstrip arrangement

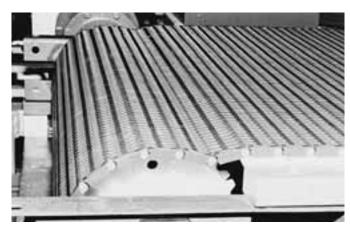


Fig. 3-9 Buckling belt rows

ANTI-SAG CARRYWAY WEARSTRIP CONFIGURATION

Under certain conditions, belts will require more carryway support near the sprockets. This is due to the belt tension not being great enough to support product between the end of the wearstrip support and the beginning of the sprocket support. Without adequate support, the belt may buckle ("Fig. 3–9 Buckling belt rows"). This buckling can be eliminated by extending the wearstrip supports, between the sprockets, to within 0.5 in. (12.7 mm) of the shaft centerline ("Fig. 3–10 Anti-sag configuration").

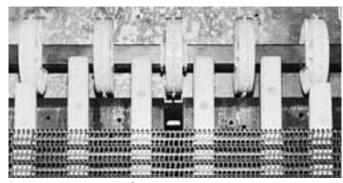


Fig. 3-10 Anti-sag configuration

Series 900 and **Series 1100** belts may need more support than normally required under heavy product loads. To prevent the belt from sagging or bowing under the weight, the wearstrips should be placed so that the unsupported spans between the strips, in parallel or chevron array, do not exceed 2 in. (50.8 mm). The unsupported span of 2 in. (50.8 mm) is measured perpendicular to the support structure ("Fig. 3–10 Anti-sag configuration"), regardless of the angle of the support to the direction of belt travel.

WEARSTRIP DESIGN CONSIDERATIONS

Temperature limits

UHMW flat and angle wearstrips are recommended to 160 °F (71 °C). HDPE is recommended to 140 °F (60 °C); Molybdenum-filled nylon (Nylatron) up to 250 °F (121 °C).

Thermal expansion and contraction

Installation of Intralox flat and angle wearstrips should allow for thermal expansion and contraction. See "THERMAL EXPANSION AND CONTRACTION" (page 336), for Coefficients of Expansion. At operating temperatures of 100 °F (38 °C) or less, it is sufficient to bevel-cut the opposing ends of strips at an angle of 30° from the horizontal and provide a clearance gap of 0.30 in. (7.6 mm). At temperatures exceeding 100 °F (38 °C), the angle of the cut should be 60°. The clearance should be determined from thermal expansion calculations. It is recommended that wearstrip joining locations be staggered for smooth belt operation.

Chemical resistance

Please refer to the Polyethylene columns of the "Chemical Resistance Guide" (page 355), for information on UHMW and HDPE wearstrips.

ROLLERS AS CARRYWAYS

Rollers are not usually used on new applications because they do not provide a continuous supporting surface. The chordal action, as the modules pass over the rollers, will often create problems if product tippage is critical. However, on converted units, rollers are sometimes employed, especially where bulk products are to be conveyed.

RETURNWAYS AND TAKE-UPS

The return side of conventional conveyors using Intralox belts are generally exposed to relatively low tension loads, but nonetheless, are very important in the overall design.

Note: On bi-directional and push-pull conveyors where return side tensions are high, special attention must be paid to this part of the design, see page 326.

CONTROL OF BELT LENGTH

One of the principal functions of the returnway is to *properly* accommodate the increase (or decrease) in the length of the belt while operating. Control of belt length is vital in maintaining sufficient tension of the belt after it disengages from the drive shaft sprockets. A belt which increases in length can disengage from its drive sprockets if proper design criteria are not followed. A belt which contracts due to cold temperatures may cause over-tensioning and excessive shaft loads if some surplus belt is not provided. Belts will either elongate or contract in operation because of these factors:

Temperature variations

Assuming belts are installed at average ambient conditions, normally about 70 °F (21 °C), any significant temperature

change in operation will result in contraction or elongation of the belt. The magnitude of the thermal contraction or expansion is dependent upon the *belt's material*, the *difference in temperatures* and the *overall length of the belt*. Please refer to the section on "THERMAL EXPANSION AND CONTRACTION" (page 336), to determine the temperature effects in your application.

Elongation (strain) under load

All belts will elongate if tension is applied. The amount of increase in length will depend upon the belt *Series and Style*, the *belt's material*, the *amount of tension* or "belt pull" applied, and the *operating temperature*. Generally speaking, on conventional conveyors where the **ADJUSTED BELT PULL (ABP)** is about 30% of **ALLOWABLE BELT STRENGTH (ABS)**, this load-induced elongation is approximately 1% of the *conveyor's length*. If **ABP** reaches the **ABS**, this strain should not exceed 2.5% of the conveyor's length.

Elongation due to break-in and wear

New belts will usually experience elongation in the first days of operation as the hinge rods and modules "seat" themselves. In some severe services where heavy loads exist

or abrasives are present, older belts will experience elongation due to wear of the hinge rods and enlargement of the modules' hinge rod holes.

Catenary sag

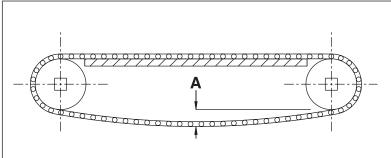
As a belt expands or contracts, it is necessary to accommodate the change in belt length. One of the most common methods for controlling belt length is to provide one or more unsupported sections on the return side in which the belt may sag. This method of controlling belt length is referred to as the Catenary Sag Method. Since these unsupported sections of belt hang under their own weight, they approximate the shape of "catenary curves". These curves are able to store the excess belt by increasing in depth between the top and bottom of the curve. If more than one unsupported returnway section exists, the excess belt length is distributed among all the unsupported sections. Thus, the more of the returnway that is equipped with these catenary sections, the less vertical space is needed to store the excess belt length. For applications that will experience a large amount of expansion in length, other take-up arrangements may be required. See page 324 for an explanation of these alternate arrangements.

BACK TENSION

An adequate amount of returnway tension is needed directly after the drive sprocket for proper belt-to-sprocket engagement. This tension is commonly referred to as **back tension**. The span length and depth of the first catenary sag section directly after the drive sprockets provide this back tension. Back tension is increased as the span is **increased** or as the depth is **decreased**. The depth of this catenary section should not be allowed to exceed the recommendations in the

following illustrations for this reason. Care should also be taken to avoid allowing the sagged belt to "bottom-out" on the conveyor frame. This will greatly reduce the back tension and may cause sprocket disengagement.

The roller directly after the drive sprocket, commonly referred to as a "snub" roller, should be placed so that the belt is wrapped between 180° and 210° around the drive sprockets (see the "C" dimension of "Dimension definitions" (page 318)).


In the design of conventional conveyors, it is seldom necessary to know precisely the amount of sag and tension required for good belt-to-sprocket engagement. In cases when catenary sag is used to accommodate belt length changes, it may be necessary to know the length of the additional or excess belt which is hanging between two adjacent supports and the tension created by that hanging section. These can be determined from formulas beginning on page 340. These simplified formulas give close approximations for predicting the results of catenary sag conditions. The actual formulas for catenary curves are more complex. However, in practice, where the span-to-sag ratio is large, these simpler formulas are sufficiently accurate for most applications. For example, with a span-to-sag ratio of 10 to 1, the error in the tension formulas is approximately 2%.

STANDARD RETURNWAYS

The following illustrations provide recommended returnway arrangements which have proven successful in many applications.

On very short conveyors, less than 6 ft. (2 m) long, a returnway support usually is unnecessary. The catenary sag between drive and idler sprockets alone is sufficient for good operation if the sag is limited to a maximum of 4 in. (102 mm).

- A -The amount of catenary sag between each set of return rollers on longer conveyors or between the drive and idle sprockets on short conveyors should be between 1 in. (25.4 mm) and 4 in. (102 mm).
- B -The snub roller should be placed 9 in. (0.23 m) to 18 in. (0.46 m) from the drive and idle shaft. The snub roller should be placed so that the belt has between 180° and 210° of wrap around the sprocket.
- C -The returnway rollers should be spaced 36 in. (0.9 m) to 48 in. (1.22 m) apart for all series belts except **Series 100**, **400** and **2000**, which should have a 48 in. (1.22 m) to 60 in. (1.52 m) spacing. This, in combination with A and B, should provide the proper amount of return side tension for good sprocket engagement.
- D -The minimum roller diameter is 2 in. (51 mm) for belts up to 1.07 in. (27 mm) pitch and 4 in. (102 mm) for larger pitch belts.

Fig. 3–11 Short conveyors (less than 6' [1.8 m])

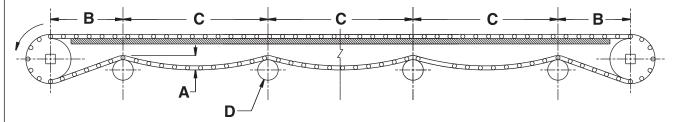
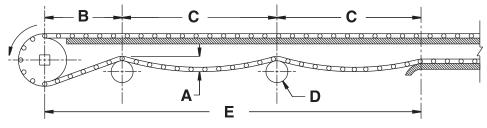



Fig. 3-12 Medium to long conveyors (6' [1.8 m] and longer)

E -Slide beds should begin at least 24 in. (0.6 m) from the drive sprockets on conveyors less than 12 ft. (3.6 m) long and 36 in. (0.9 m) to 48 in. (1.22 m) from the drive sprocket on longer belts. A combination of return rollers and a slide bed can also be used.

Fig. 3–13 Conveyors with slide beds

Roller returnways

As the length of the conveyor increases, it is necessary to provide intermediate support rollers in the returnway, but it is most important the belt be unsupported for a significant part of the total length, as shown in the following figures.

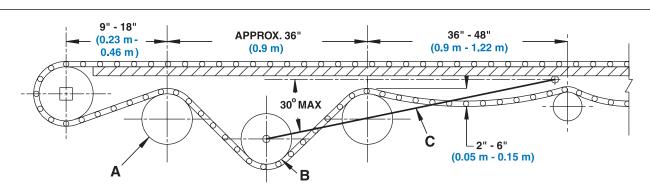
Sliderbed returnways

If a slide bed is used as part of the returnway, it should begin at least 24 in. (0.6 m) from the drive sprockets on short belts, less than 12 ft. (3.6 m) long, or 36 in. to 48 in. (1 m to 1.2 m)

from the drive sprockets on longer belts. A combination of return rollers and a slide bed can also be used. See "Fig. 3–13 Conveyors with slide beds" for more details.

SPECIAL TAKE-UP ARRANGEMENTS

Catenary sag may be described as a dynamic take-up. In many applications it does not provide adequate tension to prevent sprockets from slipping. In these cases, other types of take-ups are required.

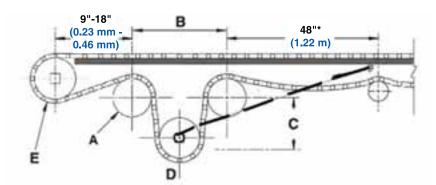

Gravity style take-ups

Gravity style take-ups usually consist of a roller resting on the belt in the returnway. Its weight provides the tension needed to maintain proper sprocket engagement. The weight is most effective when placed near the drive shaft end of the returnway. These take-ups are recommended for *conventional* conveyors which are:

- 1. over 75 ft. (23 m) long, or
- 2. over 50 ft. (15 m) long with belt speeds over 150 ft/min (30 m/min), or

- 3. exposed to large temperature variations, or
- 4. operated at speeds over 50 ft/min (15 m/min), and with frequent starts under loads of over 25 lb/ft² (120 kg/m²).

For 1.00 in. (25.4 mm) pitch belts, a 4 in. (102 mm) diameter roller with a weight of 10 lb/ft (15 kg/m) of belt width is recommended. For 2.00 in. (50.8 mm) pitch belts, the recommended specifications are 6 in. (152 mm) diameter and 20 lb/ft (30 kg/m) of belt width.



To Create Back Tension on Short Conveyors

A -Load-bearing shafts (typical)

B -Gravity take-up roller

C -Swing arm

To Create Back Tension and Belt Stoarge on Long Conveyors

A -Load-bearing rollers (typical)

- For 0.50 in. (12.7 mm) pitch, 2 in. (50 mm) dia.
- For 0.60 in. (15.2 mm) to 1.00 in. (25.4 mm) pitch, 4 in. (100 mm) dia.
- For 2.00 in. (51 mm) pitch, 6 in. (150 mm) dia.
- B -Spaced just far enough for the opening through rollers A to be bigger than roller D
- C -This distance must be no less than 3 times the belt pitch
- **D** -At least as big as **A** (swing arm optional, if necessary)
- E -Drive sprocket
- * Typical

Fig. 3-14 Gravity style take-up

Screw style take-ups

Screw style take-ups shift the position of one of the shafts, usually the idler, through the use of adjustable machine screws. The shaft bearings are placed in horizontal slots in the conveyor frame. The screw style take-ups are used to move the shaft longitudinally, thus changing the length of the conveyor.

Screw take-ups should be used only to make minor adjustments to return the catenary sag to its best position. They should not be used as primary length control devices.

The disadvantages of screw take-ups are that shafts can be misaligned easily, and the belt can be over tightened, reducing belt and sprocket life as well as increasing shaft deflection.

SPECIAL CONVEYORS

BI-DIRECTIONAL CONVEYORS

Bi-directional conveyors are usually designed in two basic drive configurations: the **Pull-pull** type and the **Push-pull** type. There are some features common to both, but each has certain advantages and disadvantages. The illustrations and comments below describe the differences between the two types.

Pull-pull designs

There are three common variations of the Pull-pull type, notably the center-drive method, the two-motor drive method, and the single-motor and slave-drive method.

• Center-drive design

The center-drive is shown in "Fig. 3–15 Center-driven bidirectional conveyor" and "Fig. 3–16 Center drive with nose bars". The reversible drive shaft is placed in the returnway near the center of the conveyor. This drive shaft should be placed to allow adequate belt tension to develop on both sides of the returnway with catenary sag sections. Notice that the rollers designated as "**A**" in the illustration are load-bearing. The shafts and bearings which support them should be so designed. Center-drive bi-directional conveyors, when designed correctly, afford excellent operating characteristics because sprocket engagement occurs over 180° of rotation. In addition, only one reversing motor is required.

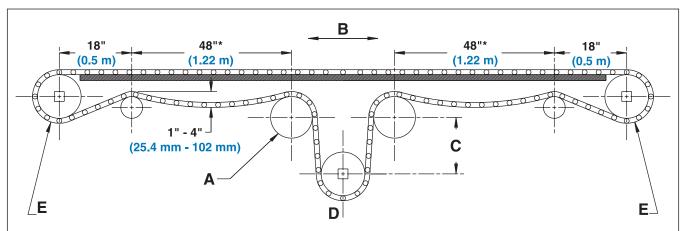
Note: Because belt tension is applied to both the carryway side and returnway side of the idler shafts at opposite ends of the conveyor, these shafts must be designed for twice the belt tension determined by calculations of the **ADJUSTED BELT PULL**, (**ABP**). Therefore, the shaft deflection calculations and sprocket spacing determination should be based upon two times the Adjusted Belt Pull. Because of these larger shaft loads, it is sometimes necessary to use very large shafts, or to use rollers in lieu of idle sprockets and shafts on these designs.

• Two-motor drive design

The two-motor drive design has the advantage of relatively low returnway belt tension, but requires additional hardware (an additional motor and slip clutches) and electrical control components. Despite the additional equipment needed, on extremely large units with heavy loads, this is often the most practical drive system.

Single-motor and slave-drive method

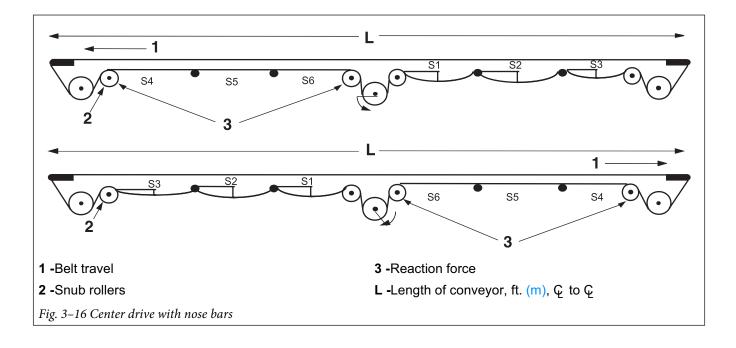
The single-motor (reversible) employing a roller chain, alternately driving either of two chain sprockets on the conveyor shafts, is another low-tension option. It is also expensive because of the additional hardware required. This drive system is usually limited to short conveyors because of the length of roller chain involved.


Push-pull designs

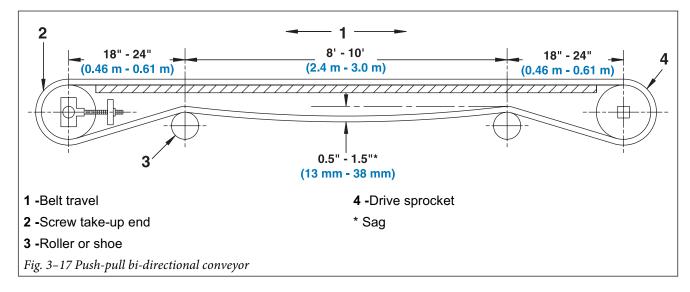
Push-pull bi-directional conveyors ("Fig. 3–17 Push-pull bi-directional conveyor") require special attention to returnway tension, shaft deflection and sprocket spacing. When the driving shaft is pulling the load towards itself, the conveyor acts like other conventional units. When the direction of belt travel is reversed, the drive shaft is pushing the loaded belt. In this situation, if the return side tension is not greater than the carryway tension, sprocket slipping or jumping will occur. Excess belt may buckle upwards in the carryway interfering with product handling.

It is vital to design a Push-pull bi-directional conveyor with the required return side belt tension. Experience has shown this needs to be about 120 percent of the *carryway side* **ADJUSTED BELT PULL (ABP)**. See the Belt Selection Instructions page 36, or the Formulas page 340. Having determined the carryway side ABP, the returnway tension is:

Required Returnway Tension = $1.2 \times ABP$



- A -Load-bearing rollers (typical):
- For 0.50 in. (12.7 mm) pitch, 2 in. (50 mm) dia.
- For 0.60 in. (15.2 mm) to 1.00 in. (25.4 mm) pitch, 4 in. (100 mm) dia.
- For 2.00 in. (51 mm) pitch, 6 in. (150 mm) dia.
- **B** -Belt travel
- C -This distance must be no less than 3 times the belt pitch
- **D** -Drive sprockets
- **E** -Rollers may be substituted for sprockets to avoid using intermediate bearings. On conveyors having a length of no greater than twice the width, unspooled rollers may be used. On longer conveyors, the rollers should be spooled allowing 3/16 in. (5 mm) to 3/8 in. (10 mm) clearance between the inside of the flange and the belt edges.


Note: For belts operating at temperatures above ambient, this clearance should exist at operating temperature.

* Typical

Fig. 3–15 Center-driven bi-directional conveyor

Effect on shaft deflection and sprocket spacing

Since both drive and idler shafts will experience a tension load as the belt approaches and leaves the sprockets, the total shaft loading is more than twice that of a conventional unidirectional conveyor. Therefore, when calculating the shaft deflection, it is most important to increase the Total Running Shaft Load for the added belt tension. The corrected Adjusted Belt Pull can be found from:

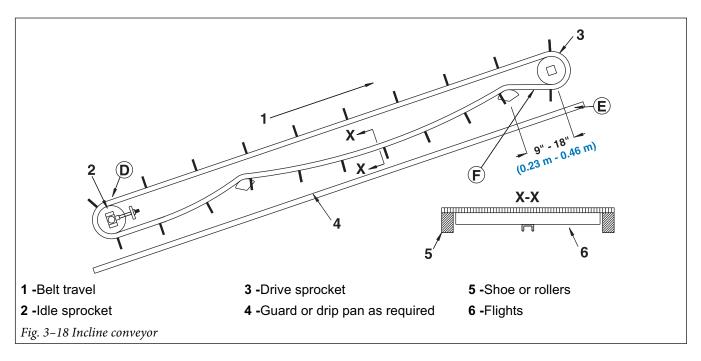
Corrected ABP = 2.2 × ABP

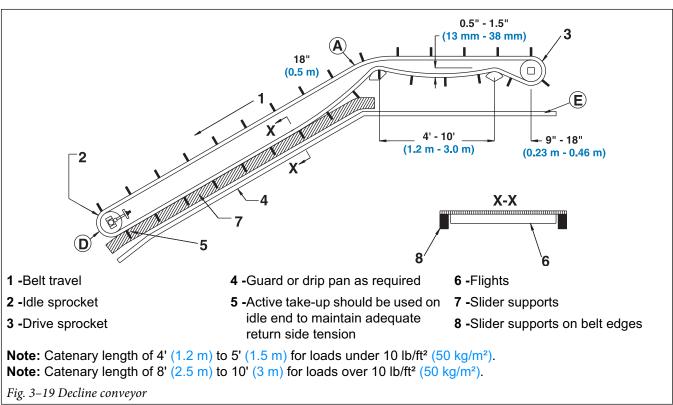
Use this value in calculating the Total Shaft Load and Shaft Deflection. Formulas for these may be found in the "Belt Selection Instructions" (page 36), or the "Formulas" (page 340). Because the belt is tensioned on both sides of the sprockets, a greater shaft deflection of about 0.22 in. (5.6 mm) is tolerable for these conveyors.

The **Corrected ABP** should also be used in determining the proper spacing of shaft sprockets. See the **Drive Shaft Sprocket Spacing** chart in "Section two: Product line" for the belt being considered. Remember that **both shafts** should be considered as drive shafts for deflection and sprocket spacing calculations.

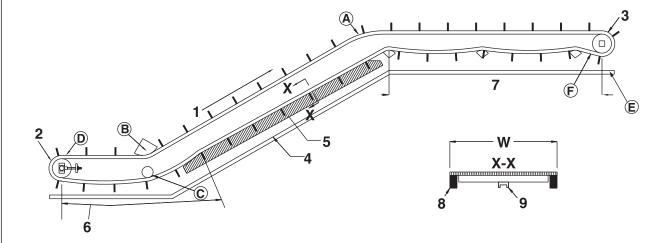
The power and torque needed to drive the Push-pull unit is not affected by the returnway tension, however, the greater shaft loading does affect the loads on bearings. The designer is therefore cautioned to allow for this additional load in the selection of the shaft bearings.

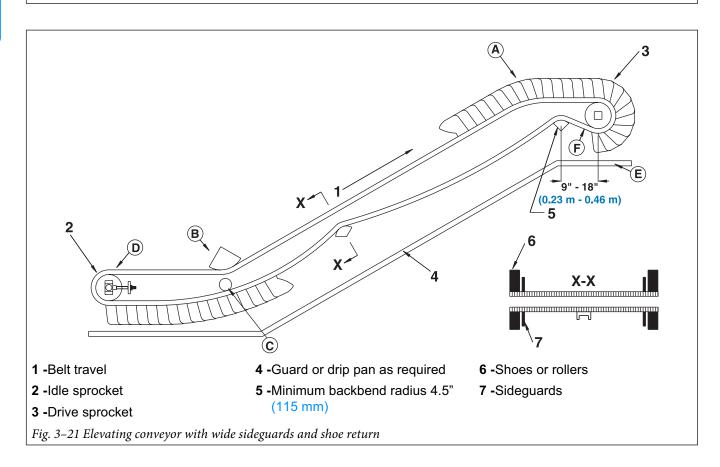
ELEVATING CONVEYORS

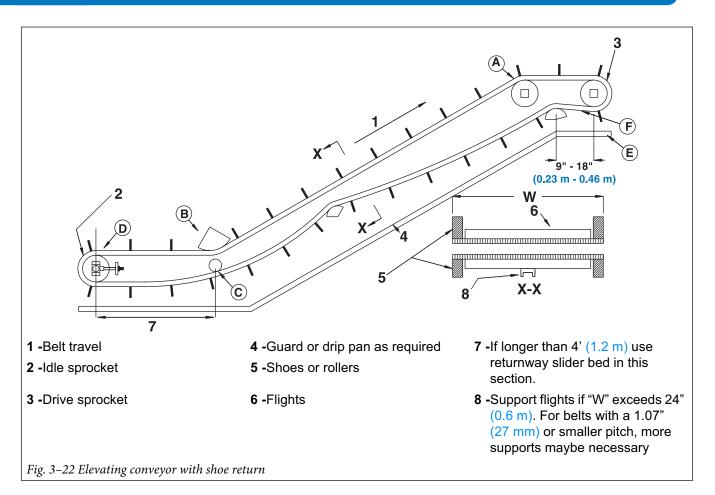

Elevating conveyors are similar to horizontal units with several design differences required for good operation. First, the upper shaft is strongly recommended as the drive shaft. The extreme difficulty of "pushing" product up an incline precludes this as a viable alternative. Second, as the angle of incline increases, the effectiveness of catenary sag as a method of length control decreases. It is always recommended that some mechanical form (screw or spring) of take-up be employed on the lower or idler shaft.


Elevators almost always involve the use of flights and sideguards which present special requirements in the design. For example, shoes or slide beds on the return side must be designed so these flights or sideguards will not interfere with the smooth operation of the conveyor. The illustrations and comments in "Fig. 3–18 Incline conveyor" through "Fig. 3–22 Elevating conveyor with shoe return" show five different variations of elevating conveyors.

GENERAL NOTES ON ELEVATING CONVEYORS: THESE NOTES APPLY TO "Fig. 3–18 Incline conveyor" TO "Fig. 3–22 Elevating conveyor with shoe return".

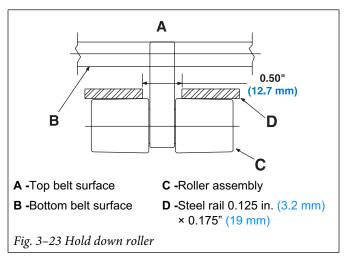

- A -If sprockets are used at intermediate points, the center sprockets are NOT retained. If rollers or shoes are used, a 3 in. (76 mm) minimum radius is required for 1.00 in. (25.4 mm) pitch belts; a 5 in. (127 mm) minimum radius for 2.00 in. (50.8 mm) pitch belts.
- **B** -To minimize wear, the hold down shoe radius should be as large as the application will allow. The minimum radius should be 6 in. (152 mm).
- C -Internal roller or shoe should have a minimum diameter of 3 in. (76 mm).
- **D** -Consider a drum or scroll on the idle end if product or foreign materials are expected to fall between the belt and the sprockets.
- E -Keep drip pans clear of flights and sidequards between drive sprockets and the first shoe or roller.
- **F** -For proper sprocket engagement, do not allow belt sag to develop between the drive sprocket and the first roller or shoe.




- 1 -Belt travel
- 2 -Idle sprocket
- 3 -Drive sprocket
- 4 -Guard or drip pan as required
- 5 -Slider supports
- 6 -Provide adequate unsupported length for sag to absorb expected belt elongation, or provide active idle end take-up — gravity, spring-loaded or pneumatic type
- 7 -Use returnway design dimensions on page 323

- 8 -Slider supports on belt edges
- 9 -Support flights if "W" exceeds 24" (0.6 m). For belts with a 1.07" (27 mm) or smaller pitch, more supports maybe necessary.
- **W** -Belt weight, lb/ft² (kg/m²)

Fig. 3–20 Elevating conveyor with belt edge slider return



Hold down rollers

Some elevating conveyors can employ Hold Down Roller assemblies in place of hold down shoes or rollers. These roller assemblies ride in steel rails on the carryway and returnway side of the conveyor. To minimize wear, the rail bend radius should be as large as the application allows. The minimum bend radius should be 12 in. (305 mm). The minimum rail thickness should be 0.125 in. (3.2 mm), and should be at least 0.75 in. (19 mm) wide. The minimum bend radius is proportional to the thickness of the carryway rail. A thicker rail will require a larger bend radius. Normally, the roller assemblies are spaced every fourth row along the length of the belt. The tightest spacing possible is every second row. Assembly spacing has no effect on bend radius.

When large temperature variations are to be encountered, care must be taken in the placement of the rails to accommodate the thermal expansion of the belt. The transverse movement of the roller assemblies can be calculated by using the **Coefficients of Thermal Expansion** (page 336). The distance of the hold down roller assembly to the belt centerline is used to calculate the movement.

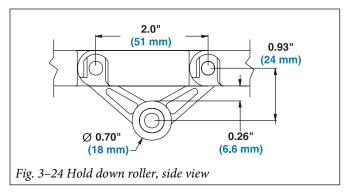
For example:

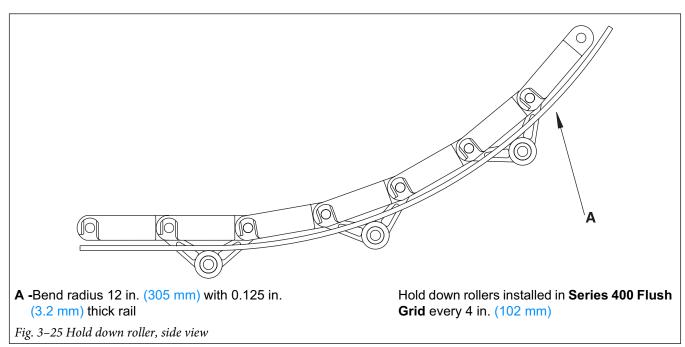
A 24 in. (610 mm) **Series 400 Flush Grid** polypropylene belt, with hold down rollers indented 4 in. (102 mm) from each side, will operate at 100 °F (38 °C). The distance at ambient temperature, 70 °F (21 °C), from a hold down roller assembly to the belt centerline is 8 in. (203 mm).

 $\Delta = L_1 \times (T2 - T1) \times e$

 Δ = 8 in. × (100 °F - 70 °F) × 0.0008 in/ft/°F × $\frac{1 \text{ ft.}}{12 \text{ in.}}$

 Δ = 0.016 in. (0.41 mm)


where


L₁ = distance from hold down roller to belt centerline

T₁ = ambient temperatureT₂ = operating temperature

e = thermal expansion coefficient (0.0008 in/ft/°F for polypropylene)

Each hold down roller assembly will move 0.016 in. (0.41 mm) when the belt is raised to operating temperature.

Buckets for Series 200 belts

Buckets are available for use with **Series 200 Open Grid**, **Flush Grid**, **Flat Top** and **Perforated Flat Top** belts. The same guidelines that apply to flighted belts generally apply to belts with buckets. The minimum backbend radius of a belt with buckets is 3.5 in. (88.9 mm). Rollers and shoes must be sized accordingly.

Sprockets cannot be located behind the bucket gussets. Gussets will interfere with the normal action of the sprockets.

Friction modules

Several Intralox belt styles incorporate a high friction material to move products (cartons, trays, bags, etc.) on inclines.

Integral friction surface modules

The high friction rubber of Friction Top modules is molded to a polypropylene or polyethylene base. Normal wearstrip, carryway and sprocket recommendations apply.

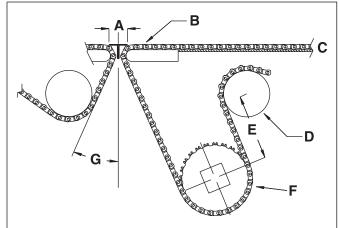
Conveyor design issues for friction modules

The following guidelines apply:

- The returnway must be designed to eliminate rubbing contact with friction modules. When using return rollers, the minimum roller diameter should be 3 in. (76 mm). Refer to "Elevating conveyors" (page 328) for detailed returnway information.
- The friction between the product and the belt is deliberately very high. Flow pressures and belt pulls will be high in applications where the product is allowed to back up. These situations are not recommended for any friction top belt.
- End-to-end transfers at both the in-feed and discharge ends are recommended. Sliding side transfers are ineffective due to the high friction quality of the friction modules.
- Thermal expansion is controlled by the base material.
- Operating temperature limits are controlled by the limits of both the friction top material and the base material.

SIDEFLEXING CONVEYORS

Series 2200 and **Series 2400** are designed for sideflexing applications that have a turning radius of 2.2, measured from the inside edge of the belt (1.7 for Tight Turning Series 2400). Sideflexing systems have many more design considerations than straight running systems. Some of these are discussed in "Section two: Product line". The data pages for **Series 2200**


and **Series 2400** list requirements for both calculating the belt loads on a sideflexing system and basic design requirements for each belt. Contact Customer Service for more detailed information.

TIGHT TRANSFER METHODS FOR SERIES 1100

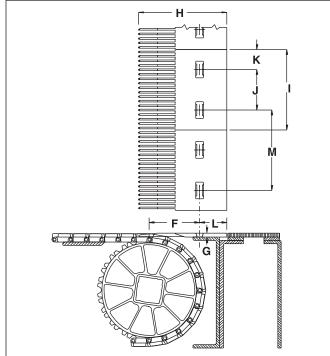
Series 1100 has two small steel sprockets for very tight end-to-end transfers. The 1.6 in. (40 mm) and 2.3 in. (59 mm) pitch diameter sprockets both offer positive drive and tracking of the belt, and allow use of very small transfer plates. When even tighter transfers are desired, nosebars or rollers may be used. The smallest nosebar diameter recommended for **Series 1100** is 0.875 in. (22.2 mm). Dead plates can be as small as 1 in. (25.4 mm) wide.

Arrangements which allow the nosebars to rotate freely are preferred. Belt tension increases dramatically as it slides around stationary nosebars. The increased belt pull is a function of the friction between the sliding belt and the stationary nosebar, and the angle of wrap between the belt and the nosebar.

The nosebar material should be selected to result in the lowest possible sliding friction between the belt and nosebar. Lower friction will reduce belt tension. The amount of belt wrap around the nosebar also affects belt tension. There should be as little wrap as possible. A common nosebar configuration is shown in "Fig. 3–26 Series 1100 nosebar configuration — End drive".

- A 1 in. (25.4 mm) Dead plate
- B 0.875 in. (22.2 mm) Minimum diameter nosebar or roller
- C Use side wearstrip for tracking
- D 3 in. (76 mm) Minimum diameter suggested
- E 4 in. (102 mm) Minimum
- F Drive sprocket
- G 20° To 25° typical This angle is used to reduce wear on the rods and rod holes. Increasing this angle could increase wear on the rods and rod holes

Fig. 3–26 Series 1100 nosebar configuration — End drive


TRANSFER DESIGN GUIDELINES

END-OFF/END-ON TRANSFERS

Finger transfer plates

Intralox Raised Rib belts and matching finger transfer plates are a highly efficient, low maintenance transfer system currently used in many container handling applications.

Correct installation of finger transfer plates is essential for trouble free service and long belt life. Proper installation is particularly important in areas where belting is subjected to high temperature variations and significant thermal expansion.

For an even number of finger transfer plates, locate from the centerline of the belt. Straddle the centerline for an odd number of plates

The finger transfer plate is to be level with the belt +0.03 in. (0.8 mm), -0.00 with hinge rod at top dead center.

Fig. 3-27 Finger transfer plates dimensional requirements

	DIMENSIONAL REQUIREMENTS FOR FINGER TRANSFER PLATE INSTALLATION in. (mm)											
							,	SERIES 900)			
	SERIES 10	00, 2400	SERIES	6 400 ^a	SERIES 1	200 ^b	6 in. (152	mm)	4 in. (10 retro	/	SERIES	1900
F	2.38	(61)	3.50	(89)	3.50	(89)	3.50	(89)	2.38	(61)	3.50	(89)
G	0.19	(5)	0.31	(8)	0.31	(8)	0.25	(6)	0.19	(5)	0.31	(8)
Н	5.83	(148)	7.25	(184)	7.25	(184)	6.50	(165)	5.83	(148)	6.11	(155)
I	3.96	(101)	5.91	(150)	5.91	(150)	5.92	(150)	3.94	(100)	5.91	(150)
J	2.50	(64)	3.00	(76)	3.00	(76)	3.00	(76)	2.18	(55)	3.00	(76)
K	0.74	(19)	1.45	(37)	1.45	(37)	1.45	(37)	0.90	(23)	1.45	(37)
L	2.00	(51)	2.00	(51)	2.00	(51)	2.00	(51)	2.00	(51)	5.50	(140)
М					Spac	ing			,			
Spacing at Ambient	Polypropylene	Acetal	Polypropylene	Polyethylene	Polypropylene (Composite	Polypropylene	Acetal	Ace	tal	Endurale Polypropy	-
Temp.	3.979 (101.1)	3.976 (101.0)	5.952 (151.2)	5.933 (150.7)	6.000 (152.4		5.981 (151.9)	5.975 (151.8)	3.9 ¹ (101		6.000 (152.4	-

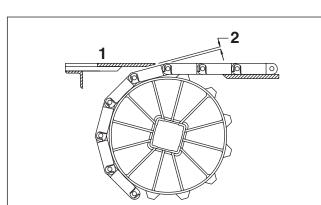
- Dimensions are for two-material, Series 400 Standard Finger Transfer Plates only. See page 70 Series 400 Finger Transfer Plate dimensions for more information.
- Dimensions are for two-material, Series 1200 Standard Finger Transfer Plates only. See page 171 Series 1200 Finger Transfer Plate dimensions for more information.

The metal plate support angle used to secure the finger transfer plates to the conveyor frame should be drilled and tapped for 1/4 – 20 screws (metric size M6). Accurate drilling and tapping are important! Finger transfer plates are molded with slots for Intralox shoulder bolts. These bolts prevent the plate from being clamped too tightly to the support angle. The loose fit allows the plates to move laterally and remain properly engaged with the belt's ribs during expansion or

contraction caused by changes in temperature. The length of the slots in the finger transfer plates limits the amount of expansion and contraction that can be accommodated. It is possible that very wide belts undergoing large temperature variations will exceed the expansion or contraction limits. Contact Intralox Sales Engineering if the values shown in the accompanying table are not large enough for your application.

MAXIMUM BELT WIDTH × TEMPERATURE inches × °F (mm × °C)				
BELT MATERIAL SERIES 100 SERIES 400 SERIES 900				
Polypropylene	3750 (52,900)	15,000 (211,700)	7500 (105,800)	
Polyethylene	2000 (28,200)	8000 (112,900)	4000 (56,400)	
Acetal	5000 (70,600)	_	10,000 (141,000)	

TEMPERATURE EFFECTS:

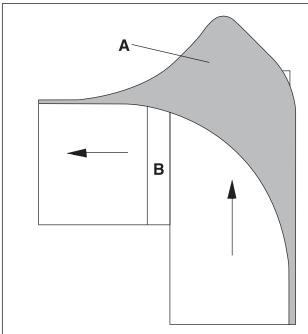

As temperature varies, the width of the belt changes in proportion to the magnitude of the temperature change. To insure proper finger transfer plate operation, perform the following check:

- 1. Determine the maximum expected change in temperature from ambient, in °F (°C).
- 2. Multiply the maximum temperature change by the belt width, in inches (millimeters).
- If the calculated value is greater than the value obtained from the chart, contact Intralox Sales Engineering before proceeding.

DEAD PLATES

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The Dead Plate Gap tables at the end of each Series in "Section two: Product line" show the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.



- 1 TOP SURFACE OF DEAD PLATE typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.
- 2 DEAD PLATE GAP

Fig. 3–28 Dead plate gap

90° CONTAINER TRANSFERS

When transferring containers on beverage lines from one conveyor to another at a 90° angle, it is common practice to use full radius guide rails with dead plates which span the space between the delivery and the takeaway conveyors. Containers moving along the full radius guide rail exert high pressure on the rail ("Fig. 3-29 Conventional full radius guide rail contours"), and on each other, often resulting in container damage. Pressure forces peak to the end of the outer curve as the containers move onto the dead plate.

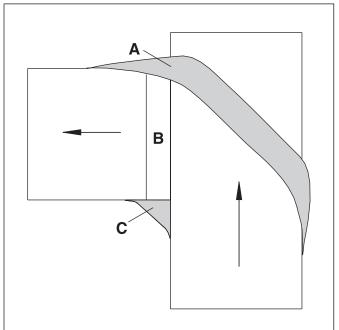

- A High pressure forces on guide rail from moving containers
- B Dead plate

Fig. 3–29 Conventional full radius guide rail contours (Showing excessive container pressure force build up)

Parabolic guide rails

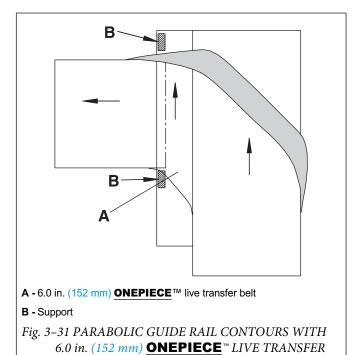
The parabolic guide rail was designed by a beverage industry engineer for better distribution of the container pressure forces along the outer guide rail. In "Fig. 3-30 Parabolic guide rail contours" is shown that the forces are more evenly distributed. This results in significantly less potential for container damage along the outer rail. However, an excessively large dead area, which strands containers, arises along the *inner* parabolic guide rail contour.

DESIGN GUIDELINES

- A More evenly distributed pressure forces from moving containers
- B Dead plate
- C Dead area

Fig. 3–30 Parabolic guide rail contours

(Showing reduced pressure force build up and dead area)


Series 900, Series 1100 and Series 1400 **ONEPIECE™** Live Transfer belt

A solution to the dead area problem incorporates a **Series** 900, Series 1100 or Series 1400 ONEPIECE™ Live Transfer Belt, either slaved to the delivery conveyor or independently driven. In "Fig. 3-31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECE™ LIVE TRANSFER BELT" a 6.0 in. (152 mm) transfer belt is shown running parallel to, and in the same direction as, the delivery conveyor. This eliminates the dead area along the inner parabolic guide rail, as well as the dead plate itself, enabling continuous container movement and eliminating stranded containers through the turn.

See "Section two: Product line" for more information on the Series 900, Series 1100 and Series **ONEPIECE™** Live Transfer Belts.

Contact Customer Service Sales Engineering for maximum number of sprockets allowed on Live Transfer Belts.

VACUUM TRANSFER APPLICATIONS

Series 900 and **Series 1100 Perforated Flat Top** belts are often used to invert empty containers which are held against the belt by a vacuum created on the opposite side of the conveyor. As the containers are carried around large diameter drums to the returnway side of the conveyor, they are inverted, then discharged from the belt.

The differential pressure acting to hold the containers to the belt, also acts to hold the belt to the carryway. Thus, an *additional belt pull* is introduced. On small belts with low differential pressures, this added pull may be low and insignificant. On large belts with high differential pressures, the additional pull may be quite high. Under average conditions, the **SPECIFIC ADDED BELT PULL** should not exceed 1.25 lb/ft² (0.24 kg/m^2) per inch (mm) water column, vacuum.

The designer also may be interested in the amount of air flow through the belt at various differential pressures. Air flow depends on the amount of open area, the differential pressure, the container spacing on the belt, and the air leakage around the perimeter of the belt. For air flow information on different belt series and styles, refer to "Table 11 AIR FLOW RATE THROUGH BELT, PER SQUARE FOOT OF BELT AREA" (page 352).

SPECIAL DESIGN GUIDELINES

THERMAL EXPANSION AND CONTRACTION

BELT

With few exceptions, the dimensions of all substances increase as their temperature is increased and contract as their temperature is decreased. Since plastics expand and contract rather significantly, this must be considered in the conveyor design whenever operating temperatures differ from ambient temperature.

The designer must allow for changes in both belt length and width to accommodate expansion or contraction. An adequate unsupported span in the returnway must be provided to absorb the increase in belt length. There must be sufficient side clearance, particularly on wide belts, to prevent interference with the side structure. In low temperature applications, the frame must support the belt fully in its cold condition, yet not interfere at ambient temperatures.

Changes in the dimensions of a belt are determined in this manner:

$$\Delta = L1 \times (T2 - T1) \times e$$

where: Δ = change in dimension, in. (mm)

L, W= total belt length/width at initial temperature, ft (m)

T2 = operating temperature, °F (°C)

T1 = initial temperature, °F (°C)

Example:

The ambient temperature is 70 °F (21 °C). The operating temperature is 180 °F (82 °C). What is the greatest increase in belt length and width of a 60 ft. (18.3 m) long by 10 ft. (3 m) wide polypropylene belt while in operation?

L =
$$60 \times (180 - 70) \times 0.0008$$

 Δ = 5.28 in. (134 mm)

This belt will increase in length by 5.28 in. (134 mm), not an insignificant amount. Its width will expand by:

$$W = 10 \times (180 - 70) \times 0.0008$$

$$\Delta = 0.88 \text{ in. } (22 \text{ mm})$$

Therefore, this belt would need a method by which approximately 5.5 in. (140 mm) of increased belt length could be absorbed on the return side of the conveyor. The width of the conveyor frame would need to be approximately 1 in. (25 mm) wider than its corresponding design under ambient conditions.

COEFFICIENTS OF THERMAL EXPANSION			
MATERIALS	in/ft/°F	(mm/m °C)	
BELTS			
ACETAL, EC ACETAL	0.0006	(0.09)	
POLYETHYLENE			
Series 100 Belts	0.0015	(0.23)	
Series 400 Raised Rib Belts	0.0015	(0.23)	
All Other Belts	0.0011	(0.17)	
POLYPROPYLENE			
(less than 100 °F [38 °C])	0.0008	(0.12)	
POLYPROPYLENE			
(greater than 100 °F [38 °C])	0.0010	(0.15)	
COMPOSITE POLYPROPYLENE	0.0004	(0.06)	
NYLON (HR, AR)	0.0005	(0.07)	
FLAME RETARDANT	0.0008	(0.12)	
WEARSTRIPS			
HDPE and UHMW PE			
-100 °F to 86 °F (-73 °C to 30 °C)	0.0009	(0.14)	
86 °F to 210 °F (30 °C to 99 °C)	0.0012	(0.18)	
NYLATRON	0.0004	(0.06)	
TEFLON	0.0008	(0.12)	
METALS			
ALUMINUM	0.00014	(0.02)	
STEEL (Carbon and Stainless)	0.00007	(0.01)	

EXPANSION DUE TO WATER ABSORPTION

If nylon belts are used in continuously wet, elevated temperature environments, they have a tendency to absorb water and expand both in length and width. If an application

requires a nylon belt in these conditions, contact Intralox Sales Engineering to determine the approximate expansion due to water absorption of the belt.

"SLIP-STICK" EFFECT

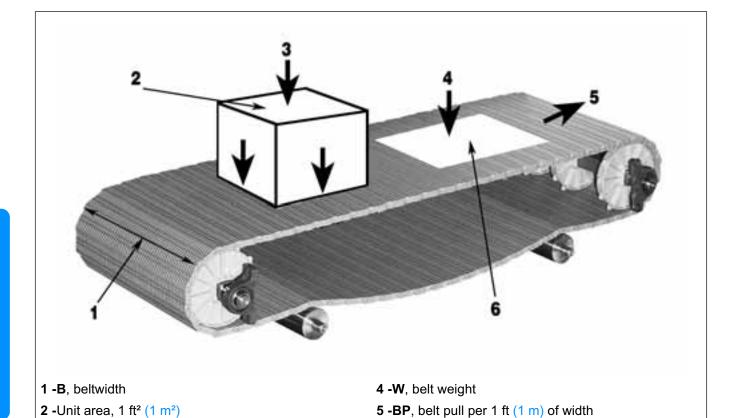
Surging on long conveyors can be caused by a condition known as "slip-stick". In this situation, the belt acts like a large spring or rubber band. The belt will make relatively short, pulsed movements throughout the length of the conveyor. The idle end of the belt may not move until there is enough belt tension to overcome the friction forces between the belt and the carryway. Instead of accelerating smoothly, the belt surges ahead. This in turn causes a brief drop in belt tension, allowing the belt to be slowed by friction. In some instances, the belt will even stop for a moment until the tension develops again. Then the process repeats itself. The idle end of the conveyor surges despite the constant speed of rotation of the sprockets at the drive end.

Carryway friction, belt stiffness, belt weight and length play a large role in determining the severity of surging in a conveyor. Stiffness is a reflection of how far a belt will stretch under a given tension. A stiffer belt will develop belt tension with less elongation. A lighter weight belt will not have as much friction force to overcome.

Other factors that can effect surging are chordal action, belt speed, drive system pulsation, return roller diameter and return roller spacing. Chordal action and drive system pulsation can initiate surging. However, return roller diameter and spacing are more critical. Return rollers influence the way in which the belt in the returnway oscillates. Oscillation in the returnway can be transmitted to the carryway side of the belt, causing surging. For more information on roller spacing and diameter, see "Returnways and take-ups" (page 322). Chordal action information is presented on page 15.

SECTION FOUR: FORMULAS AND TABLES

any application. This section also provides measurement compatible for the application. conversion factors for all the units used in the formulas and


Section Four provides the appropriate formulas and tables tables. A "Chemical Resistance Guide" (page 355) is provided needed to calculate the values for selecting the proper belt for to determine if the desired belt material will be chemically

SYMBOLS USED

		UNITS OF N	MEASURE	
		ENGLISH (USA)	METRIC (SI)	
BS	Belt Strength Rated [70 °F (21 °C)]	lb/ft of width	kg/m of width	
ABS	Allowable Belt Strength at Operating Conditions	lb/ft of width	kg/m of width	
ABSU	Allowable Belt Strength Utilized	%	%	
BP	Belt Pull at Drive Sprocket	lb/ft of width	kg/m of width	
ABP	Adjusted Belt Pull	lb/ft of width	kg/m of width	
M	Product Loading on Belt	lb/ft²	kg/m²	
M_p	Backed-up Product Load	lb/ft²	kg/m²	
W	Weight of Belt	lb/ft²	kg/m²	
Ç	Centerline	_	_	
L	Length of Conveyor, Shaft Ç to Shaft Ç	ft.	m	
Н	Elevation Change of Conveyor	ft.	m	
F	Total Friction Factor	_	_	
F_{w}	Friction Coefficient, Wearstrip to Belt	_	_	
F _p	Friction Coefficient, Product to Belt	_	_	
SF	Service Factor	_	_	
В	Width of Belt	ft.	m	
Q	Weight of Shaft	lb/ft	kg/m	
W	Total Load on Shaft	lb	kg	
L_s	Length of Shaft, between Bearings	in.	mm	
T_o	Torque on Drive Shaft	in-lb	kg-mm	
PD	Pitch Diameter of Sprockets	in.	mm	
V	Speed of Belt Travel	ft/min	m/min	
°F	Degrees, Fahrenheit	°F	_	
°C	Degrees, Celsius	_	°C	
Т	Temperature Factor	_	_	
S	Strength Factor	_	_	
HP	Horsepower	hp	_	
$P_{\rm w}$	Power, Watts	_	Watts	
Е	Modulus of Elasticity (Young's Modulus)	lb/in²	kg/mm²	
1	Moment of Inertia	in. ⁴	mm ⁴	
D	Deflection of Shaft	in.	mm	
n	Shaft Speed of Rotation	rpm	rpm	
Ø	Diameter	in.	mm	

FORMULAS

Fig. 4–1 Primary loads — conventional conveyor

CALCULATING BELT PULL OR TENSION LOAD

3 -M, product loading

The tensile strength on an operating conveyor belt is produced by the combination of loads imposed by frictional resistance and by moving the product to a different elevation, should that be involved.

Frictional forces are developed in two ways. First, the weights of the belt *and* the product being conveyed bearing on the carryway create a resistance as the belt is driven. Second, if the product is held stationary while the belt continues to move under it, there is an added resistance between the belt and the product.

Each of these frictional forces is proportional to a **COEFFICIENT OF FRICTION**, which is dependent upon the materials in question, their surface qualities, the presence (or absence) of a lubricant, the cleanliness of the surfaces and other factors. Typical values of Coefficients of Friction for common conveying applications using Intralox belts are shown in **Tables 2-A** and **2-B** (page 348). The Coefficient of Friction between the belt and the carryway wearstrips is designated as **F**_w. The coefficient between the product being moved and the belt is represented as **F**_p.

The first step in calculating **BELT PULL**, **BP**, is calculation of the **BACKED-UP PRODUCT LOAD**, M_D :

6 -Unit area, 1 ft² (1 m²)

FORMULA 1

$$\mathbf{M_P} = \mathbf{M} \times \mathbf{F_p} \times (\frac{\text{Percentage of Belt Area Backed-Up}}{100})$$

(BACKED-UP PRODUCT LOAD)

Note: If there is no slippage of product on the belt, nor "backed-up" product, ignore $\mathbf{M}_{\mathbf{p}}$, since it does not apply.

Notice that in **Table 2-A** there are dual listings of F_w for belts made of polypropylene, one for clean, smooth running applications and another for "abrasive" applications.

In this case, "abrasives" are defined as small amounts or low levels of fine grit, dirt, fiber or glass particles present on the carryway. The designer should be aware that many factors affect friction. Slight variations in conditions can produce wide deviations. Accordingly, when using friction coefficients in design calculations, allow for these variations.

After calculating M_p and finding the friction factor F_w , calculate the **BELT PULL**, **BP**, using this formula:

FORMULA 2 (BELT PULL)
$$BP = [(M + 2W) \times F_w + M_p] \times L + (M \times H)$$

This equation for Belt Pull reflects its two components: $[(M + 2W) \times F_w + M_p] \times L$ for the friction load and $(M \times H)$ for the change in elevation, if one exists.

ADJUSTING THE CALCULATED BELT PULL FOR ACTUAL SERVICE CONDITIONS

Service conditions may vary greatly. The **Belt Pull**, **BP**, calculated from **Formula 2** should be adjusted to allow for those factors. The **ADJUSTED BELT PULL**, **ABP**, is determined by applying an appropriate **Service Factor**, **SF**.

On bi-directional or "pusher" type conveyors, where the return side belt tension is high, both terminal shafts must be considered as Drive Shafts when determining **ADJUSTED BELT PULL**

FORMULA 3	(ADJUSTED BELT PULL)	
	ABP = BP × SF	
For Pusher Conveyors:		
	$\mathbf{ABP} = BP \times SF \times 2.2$	
For Center-Drive Conveyors:		
	$\mathbf{ABP} = BP \times SF \times 2.0$	

Service Factors can be determined using "Table 6 (SF) SERVICE FACTOR" (page 349).

CALCULATE ALLOWABLE BELT STRENGTH, ABS

Intralox belts have strength ratings, determined at ambient temperature and low speed. Because the strength of plastics generally decreases as their temperature increases, and because the wear rate is directly proportional to speed but inversely proportional to conveyor length, the **RATED BELT STRENGTH**, **BS**, should be adjusted according to this formula:

FORMULA 4	(ALLOWABLE BELT STRENGTH)
	$ABS = BS \times T \times S$

The *rated* **BELT STRENGTH**, **BS**, and **STRENGTH FACTOR**, **S**, may be found on the various **Product Line** pages. If a belt rating is specified for the sprocket material beling used and the rating is lower that the belt rating, use the lower rating. The **TEMPERATURE FACTOR**, **T**, can be found in "*Table 7* (*T*) *TEMPERATURE FACTOR*". If a **CENTER DRIVE** is used, determine **S** by using the following equation:

for S greater than 0.6 S' = 1-2 (1-S)for S less than 0.6 S' = 0.2then, $ABS = BS \times T \times S'$

DETERMINE THE MAXIMUM SPACING OF DRIVE SHAFT SPROCKETS AND RECOMMENDED MINIMUM NUMBER OF SHAFT SPROCKETS

To determine the number of sprockets needed, you must first determine the belt pull in relation to the available strength of the belt. Using the ADJUSTED BELT PULL and ALLOWABLE BELT STRENGTH calculate the ALLOWABLE BELT STRENGTH UTILIZED using this formula.

FORMULA 5	(ALLOWABLE BELT STRENGTH UTILIZED)
	ABSU = (ABP ÷ ABS) × 100%

Refer to the graph for the appropriate belt in Section 2 labeled "Sprocket Quantity as a Function of Belt Strength Utilized." Use the **ALLOWABLE BELT STRENGTH UTILIZED**, **ABSU**, to find the minimum sprocket spacing in inches (or meters). The number of drive sprockets required for a conveyor is determined by dividing the belt width in inches (or meters) by the sprocket spacing and round up to the next whole number.

Idle Shaft sprockets on conventional conveyors normally are exposed to less tension than drive sprockets and, therefore, may operate with wider spacing. However, this spacing should never exceed 6.0 in (152 mm) for all Series except Series 200 where the maximum spacing should never exceed 7.5 in. (190 mm). Specific recommendations for the minimum number of Idle Shaft sprockets can be found in the appropriate sprocket sections of the "Section two: Product line" pages.

If the calculated **ABSU** is above 75%, please contact Intralox Customer Service Sales Engineering to run the Intralox Engineering Program and verify your results.

CONFIRMATION OF SHAFT STRENGTH

Two important functions of the drive shaft, which must be analysed before its ability to operate properly can be determined, are: (1) its ability to absorb the *bending force* of belt pull with an acceptable shaft deflection, and (2) its ability to transmit the necessary *torque* from the driver without failure.

The initial step here is to make a *preliminary* selection of a shaft size which fits your sprocket of choice. The shaft will bend or deflect under the combined loads of the **ADJUSTED BELT PULL**, **ABP**, and its own **WEIGHT**. It is assumed these forces are co-planar and can be combined into a **TOTAL SHAFT LOAD**, **w**, determined by:

FORMULA 6 (TOTAL SHAFT LOAD)
$$\mathbf{w} = (\mathsf{ABP} + \mathsf{Q}) \times \mathsf{B}$$

The **SHAFT WEIGHT**, **Q**, can be found from "*Table 8 SHAFT DATA*" (page 351). **B** represents the width of your belt.

SHAFT DEFLECTION

For shafts supported by *two bearings*, the **DEFLECTION**, **D**, can be found from:

FORMULA 7	(SHAFT DEFLECTION — 2 BEARINGS)
	$D = \frac{5}{384} \times \frac{w \times L_S^3}{E \times I}$

MODULUS OF ELASTICITY (E) and **MOMENT OF INERTIA (I)** values can be found in "*Table 8 SHAFT DATA*" (page 351) **L**_s is the *unsupported span* of the shaft between bearings.

MAXIMUM SHAFT DEFLECTION RECOMMENDATIONS

As the drive shaft bends or deflects under heavy loads, the *longitudinal distance* between the drive shaft and the idler shaft is less at the centerline of the belt than at its edges. This causes

an uneven distribution of tension in the belt, the greatest being absorbed at the edges. Since the tension distribution is uneven, the load absorbed by the sprocket teeth is not equal. Intralox has determined that satisfactory performance can be obtained if shaft deflections do not exceed certain limits. These limits are:

CONVENTIONAL, UNI-DIRECTIONAL CONVEYORS

Maximum Shaft Deflection = 0.10 in. (2.5 mm)

BI-DIRECTIONAL OR "PUSHER" CONVEYORS

Maximum Shaft Deflection = 0.22 in. (5.6 mm)

If the *preliminary* shaft selection results in excessive deflection it will be necessary to pick a larger shaft size, a stronger material or use intermediate bearings to reduce shaft span.

DEFLECTIONS WITH INTERMEDIATE BEARINGS

With a *third bearing*, located *in the center of the shaft*, the deflection formula to be used is:

FORMULA 8	(SHAFT DEFLECTION — 3 BEARINGS)
	$D_3 = \frac{1}{185} \times \frac{\frac{W}{2} \times L_S^3}{E \times I}$
	$D_3 = \frac{w \times L_S^3}{370 \times E \times I}$

In this case, L_s is the span between the center bearing and an outer bearing.

In cases involving very wide belts under heavy loads, it may be necessary to use *more than one* intermediate bearing to reduce deflections to an acceptable level. Since the formulas for deflections in these cases become complex and unwieldy, the designer can determine a *safe, maximum span length* for the **TOTAL SHAFT LOAD**, **w**, from **Tables 10-A**, **10-B**, **10-C**, and **10-D** (page 353).

In using these charts the designer is reminded to first calculate the **TOTAL SHAFT LOAD**, **w**, **(Formula 6)**. In the case of Bi-directionals and Pusher Conveyors, the **ADJUSTED BELT PULL**, **ABP**, must also be corrected for the increased tension required. See **Formula 5** for the corrected **ABP**.

DRIVE SHAFT TORQUE

The drive shaft must also be strong enough to transmit the twisting or rotating forces imposed by the drive motor to overcome the resistance of moving the belt and the product. The torsional action introduces shearing stresses on the shaft, usually most critical in the bearing journals adjacent to the driver.

Rather than require the designer to calculate the shearing stresses, "Table 9 MAXIMUM RECOMMENDED TORQUE ON DRIVE SHAFT" (page 351) has been developed to quickly determine the **MAXIMUM RECOMMENDED DRIVE SHAFT TORQUE** for a given shaft journal diameter and shaft material. For example, assume your preliminary shaft selection is 2.5 in. (63.5 mm) and made of Carbon Steel. Since the *maximum* journal diameter is 2.5 in. (63.5 mm), the

maximum recommended torque for *this* size is 22,500 in-lb (259,000 kg-mm).

The actual **TORQUE**, **T**_o, to be transmitted can be calculated from:

FORMULA 9 (TORQUE, DRIVE SHAFT)
$$T_o = ABP \times B \times \frac{P.D.}{2}$$
 where P.D. represents your sprocket's Pitch Diameter, in. (mm).

Compare the *actual* torque with the *maximum recommended* torque to determine if this journal size is adequate. If not, try the next larger shaft size or a stronger material. If these are not possible, try a smaller sprocket size.

In many cases, the actual torque will be considerably lower than the maximum recommended. If so, reducing the journal diameter to an acceptable smaller size will reduce the cost of bearings required.

DETERMINING THE POWER NEEDED TO DRIVE THE BELT

The *POWER* needed to overcome the resistance of moving the belt and product can be calculated from these formulas:

FORMUL	10 (HORSEPOWER — ENGLISH [USA] UNITS)
	ABP × B × V
	HORSEPOWER, HP =
where:	ABP = Adjusted Belt Pull, lb/ft of belt width
	B = Belt Width, ft.
	V = Belt Speed, ft/min

Another version using different factors is:

FORMU	A 11 (HORSEPOWER — EN	IGLISH [USA] UNITS)
	HORSEPOWER, HP = $\frac{T_o \times 16,500 \times 10^{-2}}{16,500 \times 10^{-2}}$	
where:	T _o = Torque, in-lb	
	P.D. = Pitch Diameter, in.	
	V = Belt Speed, ft/min	

FORMULA	12 (POWER — METRIC UNITS)
	ABP × B × V
	POWER, WATTS =
where:	ABP = Adjusted Belt Pull, kg/m of belt width
	B = Belt Width, m.
V = Belt Speed, m/min	

and another version is:

FORMULA	13 (POWER — METRIC UNITS)
	POWER, WATTS = $\frac{T_o \times V}{3.06 \times P.D.}$
where:	T _o = Torque, kg-mm
	P.D. = Pitch Diameter, mm
	V = Belt Speed, m/min

If Torque is known in *Newton*-millimeters the equation for Power is:

FORMULA 14 (POWER — SI UNITS)

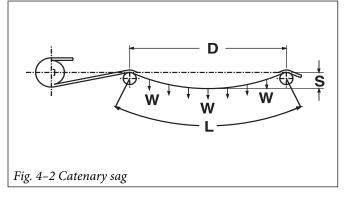
POWER, WATTS =
$$\frac{T_o \times V}{30 \times P.D.}$$
where:
$$T_o = Torque, N-mm$$

DETERMINING DRIVE MOTOR POWER REQUIREMENTS

The power calculated to drive the belt does not include the power to overcome the friction in gears, bearings, chains and other mechanical parts of the system. Refer to "Section three: Design guidelines" (page 317), for a listing of efficiency losses in components in common use and increase the belt drive power accordingly.

THERMAL EXPANSION (CONTRACTION) OF MATERIALS

As materials experience increases or decreases in temperature, their dimensions increase or decrease likewise. Conveyor belts which are installed at one temperature and operate at another, or which pass through different temperatures in their operating circuit, will expand or contract accordingly. Since plastics have relatively high rates of expansion (contraction), this characteristic must be considered in the application of these belts if significant temperature changes are expected.


The *change* in the length, width or thickness of a material can be determined from:

FORMULA 15	(THERMAL EXPANSION OR CONTRACTION)							
	$\Delta = L_1 \times (T_2 - T_1) \times e$							
where:	Δ = change in dimension, in. (mm)							
	L ₁ = dimension at initial temperature, ft. (m)							
	T ₂ = operating temperature, °F (°C)							
	T ₁ = initial temperature, °F (°C)							
	<pre>e = coefficient of thermal expansion, in/ft/°F (mm/m/°C)</pre>							

Coefficients of Thermal Expansion of various materials may be found on page 336.

CATENARY SAG (see discussion in Section 3)

A belt hanging under the influence of gravity between two supports will assume the shape of a curve called a "catenary". The specific dimensions of this curve will depend upon the distance between supports, the length of hanging belt and the belt's weight.

In most cases, the actual shape of this curve is not important, but the conveyor designer is interested in two things: the *excess belt* required *and* the *tension* created by the sagging belt.

The excess belt, \mathbf{X} , or the difference between \mathbf{L} and \mathbf{D} in the above illustration is found from:

FORMULA 16	(EXCESS BELT —CATENARY SAG)
	$\mathbf{x} = \frac{2.66 \times S^2}{1}$
	A
where:	X = excess belt, ft. (m)
	S = sag, ft. (m)
	D = distance between supports, ft. (m)

The tension, **T**, created by a catenary section of belt, is found from:

FORMULA 17	(TENSION —CATENARY SAG)
English System	
	$T = \frac{d^2 \times W}{96 \times s}$
where:	T = tension, lb/ft. of belt width
	s = sag, in.
	d = distance between supports, in.
	W = belt weight, lb/ft².
Metric System	
	$T = \frac{d^2 \times W}{8000 \times s}$
where:	T = tension, kg/m of belt width
	s = sag, mm
	d = distance between supports, mm
	W = belt weight, kg/m²

Note: SIDEFLEXING BELTS

Formulas for sideflexing belts are provided on a PC based Flat-Turn Program for radius applications. Call Customer Service to request a diskette.

SAMPLE PROBLEMS

STEEL CAN HANDLING EXAMPLE

CONDITIONS (IN METRIC UNITS):

A beverage handler proposes to use **Series 400 Raised Rib** Polypropylene belting to carry steel cans, weighing 122 kg per square meter, on a conveyor which is 18.3 m long and 1.2 m wide. The belt will run wet on UHMW wearstrips at a speed of 6 m per minute, frequent starts under load are expected and the steel cans will "back-up" a total of 15.2 m. The operating temperature is to be 82 °C. A 12 tooth, 198 mm pitch diameter is preferred, and Carbon Steel shafts are acceptable.

STEP 1: Determine the BACKED-UP PRODUCT LOAD, **M**_p (Formula 1)

$$\mathbf{M_p} = \mathbf{M} \times \mathbf{F_p} \times (\frac{\text{Percentage of Belt Area Backed-Up}}{100})$$

The **COEFFICIENT OF FRICTION**, F_{w} , between the belt and the UHMW wearstrips, is determined from "Table 2 (Fw) COEFFICIENT OF START-UP FRICTION BETWEEN WEARSTRIP & BELT" (page 348) to be 0.11. The **COEFFICIENT OF FRICTION**, F_{p} , between the steel cans and the belt, is found from "Table 3 (Fp) COEFFICIENT OF RUNNING FRICTION BETWEEN CONTAINER & BELT" (page 348) to be 0.26.

Since the steel cans will be backed-up 15.2 m, the *percentage* of **BELT AREA BACKED-UP** is

$$\frac{15.2}{18.3}$$
 or 83.1%

Then the **BACKED-UP PRODUCT LOAD**, **M**_D, is:

$$M_p = 122 \times 0.26 \times (\frac{83.1}{100})$$

 $M_p = 26.4 \text{ kg/m}^2$

STEP 2: Calculate BELT PULL, BP, (Formula 2)

 $BP = [(M + 2W) \times F_w + M_p] \times L + (M \times H)$

M = Product Loading (122 kg/m²)

W = Belt Weight (9.52 kg/m²)

L = Conveyor Length (18.3 m)

M_p = Backed-Up Product Load (26.4 kg/m²)

H = Elevation Change (zero)

Note: Since there is no elevation change, disregard the factor M x H in the formula.

Therefore:

BP =
$$[(122 + (2 \times 9.52)) \times 0.11 + 26.4] \times 18.3$$

BP = 767 kg/m of belt width

STEP 3: ADJUSTED BELT PULL, ABP (Formula 3)

ABP = BP × SF

The **Service Factor**, **SF**, is determined from "*Table 6 (SF) SERVICE FACTOR*" (page 349) to be 1.2.

Then

ABP = 767×1.2

ABP = 920 kg/m of belt width

STEP 4: CALCULATE THE ALLOWABLE BELT STRENGTH, **ABS** (Formula 4)

$$ABS = BS \times T \times S$$

The *rated* **BELT STRENGTH**, **BS**, can be found from "*Table 4 BELT STRENGTHS IN lb/ft (kg/m)*." (page 348) to be 3,570 kg/m of width.

With the operating temperature of 82 °C, the **TEMPERATURE FACTOR**, **T**, found from "*Table 7* (*T*) *TEMPERATURE FACTOR*" (page 350) is 0.48.

To determine the **STRENGTH FACTOR**, **S**, first calculate the **SPEED/LENGTH** ratio of 6.0/18.3 or 0.33. From page 64, **S** is 1.0.

Then:

ABS = $3,570 \times 0.48 \times 1.0$ **ABS** = 1,714 kg/m of belt width

Since the ABS exceeds ABP, this belt is strong enough for this application.

STEP 5: MAXIMUM SPACING OF DRIVE SHAFT SPROCKETS

ABSU = $(ABP \div ABS) \times 100\%$

ABSU = $(920 \div 1,714) \times 100\%$

ABSU = 54%

From page 64, the **MAXIMUM SPROCKET SPACING** should be about 70 mm.

STEP 6: DETERMINE DRIVE SHAFT DEFLECTION

Since this is a fairly wide belt, first try a 60 mm square shaft. The **TOTAL SHAFT LOAD**, **w**, is calculated by:

$$\mathbf{w} = (ABP + Q) \times B$$
 (Formula 6)

From "*Table 8 SHAFT DATA*" (page 351), find **Q**, the **SHAFT WEIGHT**, to be 29.11 kg/m of length. Then:

$$\mathbf{w} = (920 + 29.11) \times 1.2$$

 $\mathbf{w} = 1{,}139 \text{ kg}$

For **SHAFT DEFLECTION**, assume first the shaft is to be supported by two bearings. Therefore, the **DEFLECTION**, **D**, is found from:

$$D = \frac{5}{384} \times \frac{w \times L_S^3}{E \times I}$$
 (Formula 7)

Since the belt is to be 1.2 m or 1200 mm wide, assume the **unsupported LENGTH OF SHAFT**, $L_{\rm S}$ is 1320 mm, and from "Table 8 SHAFT DATA" (page 351), the **MODULUS OF ELASTICITY**, **E**, and the **MOMENT OF INERTIA**, **I**, are found to be 21,100 kg/mm² and 1,080,000 mm⁴, respectively. Then:

$$\mathbf{D} = \frac{5}{384} \times \frac{1139 \times 1320^{3}}{21,000 \times 1,080,000}$$
$$\mathbf{D} = 1.50 \text{ mm}$$

Since this deflection is less than the recommended limit of 2.5 mm, supporting it with two bearings is acceptable.

STEP 7: DRIVE SHAFT TORQUE, **T_o** (Formula 9)

$$T_o = ABP \times B \times \frac{P.D.}{2}$$

 $T_o = 920 \times 1.2 \times \frac{198}{2}$
= 109,296 kg-mm

From the **MAXIMUM RECOMMENDED TORQUE** curve, "*Table 9 MAXIMUM RECOMMENDED TORQUE ON DRIVE SHAFT*" (page 351), we see the maximum torque for a journal diameter of 60 mm is 180,000 kg-mm. Therefore, the *minimum* journal diameter in this case should be about 55 mm.

STEP 8: BELT DRIVE POWER (Formula 10)

$$\begin{aligned} \textbf{BELT POWER} &= \frac{\text{ABP} \times \text{B} \times \text{V}}{6.12} \\ \textbf{BELT POWER} &= \frac{920 \times 1.2 \times 6.0}{6.12} \\ \textbf{BELT POWER} &= 1082 \text{ Watts} \end{aligned}$$

STEP 9: DETERMINE DRIVE MOTOR POWER

Assume this conveyor will be driven by an electric motor, through a triple reduction, spur gear reducer, chain and sprockets. The shafts are supported by ball bearings. From the table on page 319, the *total* of the efficiency losses in the machinery components are estimated to be 11%.

The **MOTOR POWER** is found from:

MOTOR POWER =
$$\frac{1082}{100 - 11}$$
 × 100 = 1216 Watts

Therefore a 2 kW motor will be a good choice.

FOOD HANDLING EXAMPLE

CONDITIONS (IN U.S. UNITS):

120,000 lb/hr of raw, washed vegetables (product loading of 10 lb/sq ft) are to be lifted a vertical distance of 15 ft. on an *elevating* conveyor 25 ft. long and 2 ft. wide. The environment is wet, the temperature is ambient and belt speed is to be 75 ft/min. Wearstrip material is UHMW and the pre-selected belt is a **Series 800 Perforated Flat Top** Polypropylene with flights and sideguards. The flight spacing is 8 in. The belt will be started unloaded and run continuously. The preferred sprockets are 10 tooth, 6.5 in. pitch diameter. Stainless Steel (303) shafts are required.

STEP 1: DETERMINE THE BACKED-UP PRODUCT LOAD, $\mathbf{M_p}$ (Formula 1)

$$\mathbf{M_p} = M \times \mathbf{F_p} \times (\frac{\text{Percentage of Belt Area Backed-Up}}{100})$$

Since there is no product backed-up, disregard **M**_p. From "Table 2 (Fw) COEFFICIENT OF START-UP FRICTION BETWEEN WEARSTRIP & BELT" (page 348), **F**_w = **0.11**.

STEP 2: BELT PULL, BP (Formula 2)

BP =
$$(M + 2W) \times F_W \times L + (M \times H)$$

BP = $[10 + 2(1.54)] \times 0.11 \times 25 + (10 \times 15)$
BP = $186 \text{ lb/ft of belt width}$

STEP 3: ADJUSTED BELT PULL, ABP (Formula 3)

Service Factor is 1.4 (See "Table 6 (SF) SERVICE FACTOR" (page 349)), Elevating Conveyor). Then:

ABP =
$$186 \times 1.4$$

ABP = $260 \text{ lb/ft of belt width}$

STEP 4: ALLOWABLE BELT STRENGTH, **ABS** (Formula 4)

$$ABS = BS \times T \times S$$

The **RATED BELT STRENGTH**, **BS**, is 1,000 lb/ft from "Table 4 BELT STRENGTHS IN lb/ft (kg/m)." (page 348). **TEMPERATURE FACTOR**, **T**, is 0.98 and **STRENGTH FACTOR**, **S**, is 0.92. (See "Table 7 (T) TEMPERATURE FACTOR" (page 350))

ABS =
$$1,000 \times 0.98 \times 0.92$$

ABS = 902 lb/ft of belt width

Since **ABS** exceeds **ABP**, **Series 800 Perforated Flat Top** Polypropylene belting is adequate for this application.

STEP 5: MAXIMUM SPACING OF DRIVE SHAFT SPROCKETS

ABSU = (ABP ÷ ABS) × 100% **ABSU** = (620 ÷ 902) × 100% **ABSU** = 29%

From page 95, is 4.0 in.

MOTOR HORSEPOWER = $\frac{1,18}{100-20}$ × 100 = 1,48 HP

In this case, a 1.5 HP motor will be a suitable choice.

STEP 6: DETERMINE DRIVE SHAFT DEFLECTION

Total Shaft Load, w, is:

$$\mathbf{w} = (ABP + Q) \times B$$
 (Formula 6)

Pre-select a 1.5 in. square Stainless Steel shaft. Therefore:

$$\mathbf{w} = (260 + 7.65) \times 2$$

 $\mathbf{w} = 535 \text{ lb}$

and SHAFT DEFLECTION, D, is:

$$D = \frac{5}{384} \times \frac{W \times L_S^3}{F \times I}$$
 (Formula 7)

Assume L_s is 28 in. From "Table 8 SHAFT DATA" (page 351), **E** is 28,000,000 lb/in² and **l** is 0.42 in.⁴. Therefore:

$$\mathbf{D} = \frac{5}{384} \times \frac{535 \times 28^3}{28,000,000 \times 0.42}$$

which is less than the recommended limit of 0.10 in.

STEP 7: DRIVE SHAFT TORQUE, **T_o** (Formula 9)

$$T_o = ABP \times B \times \frac{P.D.}{2}$$

 $T_o = 260 \times 2 \times \frac{6.5}{2}$
 $T_o = 1690 \text{ in-lb}$

From "Table 9 MAXIMUM RECOMMENDED TORQUE ON DRIVE SHAFT" (page 351), a torque of 1,690 in/lb requires a *minimum* journal diameter of about 0.85 in. with 303 Stainless Steel, therefore, a journal diameter of 1.0 in. is recommended.

STEP 8: BELT DRIVE POWER (Formula 10)

BELT HORSEPOWER =
$$\frac{ABP \times B \times V}{33,000}$$
BELT HORSEPOWER =
$$\frac{260 \times 2 \times 75}{33,000}$$
BELT HORSEPOWER = 1.18 HP

STEP 9: DETERMINE DRIVE MOTOR POWER

Assume it is determined from page 319, that the total efficiency losses are expected to be 20%. The **MOTOR HORSEPOWER**, then, is found from:

BI-DIRECTIONAL CONVEYOR EXAMPLE

CONDITIONS (IN METRIC UNITS):

A canning plant accumulator table, measuring 6 m in length and 2.4 m wide, is to handle cans weighing 50 kg/m^2 . Belt speed will be 3.0 m/min. Frequent loaded starts are expected. The belt will operate at $21 \,^{\circ}\text{C}$. The wearstrips are to be Stainless Steel. The belt will run dry. **Series 900 Raised Rib** in Acetal is the preferred belt, using 18 tooth, $156 \, \text{mm}$ pitch diameter sprockets on $60 \, \text{mm}$ square shafts of $304 \, \text{Stainless}$ Steel.

STEP 1: DETERMINE THE BACKED-UP PRODUCT LOAD, M_p (Formula 1)

$$\mathbf{M_p} = \mathbf{M} \times \mathbf{F_p} \times (\frac{\text{Percentage of Belt Area Backed-Up}}{100})$$

Since there is no product backed-up, ignore $\mathbf{M_p}$. $\mathbf{F_w} = 0.19$

STEP 2: CALCULATE BELT PULL, BP (Formula 2)

BP =
$$(M + 2W) \times F_W \times L + (M \times H)$$

M = 50 kg/m²
W = 8.19 kg/m²
L = 6 m
F_w = 0.19
H = zero

BP = $[50 + 2(8.19)] \times 0.19 \times 6$ **BP** = $\frac{76 \text{ kg/m}}{6}$ of width

STEP 3: CALCULATE ADJUSTED BELT PULL, **ABP** (Formula 3)

ABP = BP × SF × 2.2 **ABP** = $76 \times 1.2 \times 2.2$ **ABP** = 201 kg/m of width

STEP 4: CALCULATE ALLOWABLE BELT STRENGTH, **ABS** (Formula 4)

S = 1.0ABS = 2200 × 0.98 × 1.0 ABS = 2156 kg/m of width

Therefore, since **ABS** exceeds **ABP**, **Series 900 Raised Rib** in Acetal is a suitable choice.

STEP 5: DETERMINE MAXIMUM SPACING OF DRIVE SHAFT SPROCKETS

Since both the carryway and return way sides will be under tension, the idle shafts are to be treated as drive shafts for sprocket spacing and deflection calculations.

> **ABSU** = (ABP ÷ ABS) × 100% **ABSU** = (201 ÷ 2,156) × 100% **ABSU** = 9%

From the chart on page 132, the **MAXIMUM SPROCKET SPACING** is 95 mm.

STEP 6: CONFIRM DRIVE SHAFT STRENGTH

Total Shaft Load, w, is:

w = (Corrected ABP + Q) × B (Formula 6) **w** = (182 + 29.11) × 2.4 **w** = 507 kg

A check of the **Maximum Drive and Idler Shaft Span Length, Table 11-C** (page 353), reveals that the shaft load of 507 kg applied to a 60 mm square Stainless Steel shaft. This allows a maximum span of about 2600 mm. Since this conveyor is 2.4 m or 2400 mm wide, intermediate bearings should not be required.

CALCULATE DRIVE SHAFT TORQUE, T_o (Formula 9):

$$T_o$$
 = ABP × B × $\frac{P.D.}{2}$
ABP = 201 kg/m of width
B = 2.4 m of width
P.D. = 156 mm
 T_o = 201 × 2.4 × $\frac{156}{2}$
 T_o = 37,627 kg-mm

From the chart of **MAXIMUM RECOMMENDED TORQUE**, the *minimum* journal diameter for a torque of 37,627 kg-mm would be about 27 mm. Since a 60 mm shaft is needed, due to deflection, the journal diameter may be as large as 55 mm, for example.

STEP 7: CALCULATE THE POWER TO DRIVE THE BELT (Formula 10)

BELT POWER =
$$\frac{\text{ABP} \times \text{B} \times \text{V}}{6.12}$$

$$\text{ABP} = 201 \text{ kg/m of width (above)}$$

$$\text{B} = 2.4 \text{ kg/m width (above)}$$

$$\text{V} = 3.0 \text{ m/min (above)}$$

$$\text{BELT POWER} = \frac{201 \times 2.4 \times 3.0}{6.12}$$

$$\text{BELT POWER} = 236 \text{ Watts}$$

STEP 8: CALCULATE DRIVE MOTOR POWER

Refer to page 319, for efficiency losses in mechanical components. Assume the total of the efficiency losses for this conveyor are determined to be about 25%. Therefore, **MOTOR POWER** is:

MOTOR POWER =
$$\frac{236}{100 - 25}$$
 × 100 = 315 Watts

Therefore a 1/3 kW motor would be a good selection.

TABLES

	Table 1 (W) BELT WEIGHT IN lb/ft² (kg/m²).									
SERIES	STYLE		SPECIAL APPLICATIONS							
SERIES		POLYPROPYLENE	MATERIALS ^a							
	This information was incorporated into the chart on page page 22.									

Table 2 (F _w) COEFFICIENT OF START-UP FRICTION BETWEEN WEARSTRIP & BELT														
	STANDARD MATERIALS ^a													
		POLYP	ROPYLENE		POLYET	HYLENE	ACE	TAL	EC ACETAL					
WEARSTRIP MATERIAL	SMOOTH ABRASIVE ^b SURFACE SURFACE			SMOOTH SURFACE		SMOOTH SURFACE		SMC SURI	OTH FACE					
	WET	DRY	WET	DRY	WET	DRY	WET	DRY	WET	DRY				
U.H.M.W.	0.11	0.13	NR	NR	0.24	0.32 ^c	0.10	0.10	0.10	0.10				
H.D.P.E.	0.09	0.11	NR	NR	NR	NR	0.09	0.08	0.09	0.08				
Molybdenum- or Silicon- filled Nylon	0.24	0.25	0.29	0.30	0.14	0.13	0.13	0.15	0.13	0.15				
Cold-Rolled Finish Stainless or Carbon Steel	0.26	0.26*	0.31	0.31*	0.14	0.15*	0.18	0.19*	0.18	0.19*				

- a. For Special Applications Materials see appropriate data pages.
- Based on Intralox tests.
- c. Increased wear may be experienced at belt speeds above 50 feet per minute (15 meter/min).

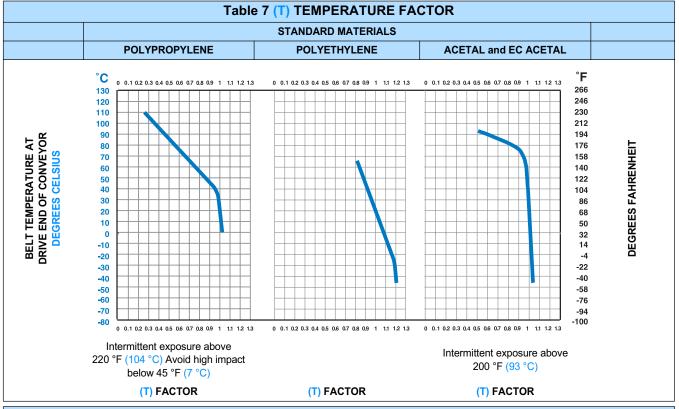
Table 3 (F _p) COEFFICIENT OF RUNNING FRICTION BETWEEN CONTAINER & BELT ^a													
	STANDARD MATERIALS ^b												
CONTAINER MATERIAL	POLYPRO	OPYLENE	POLYET	HYLENEC	ACE	TAL	EC ACETAL						
	WET	DRY	WET	DRY	WET	DRY	WET	DRY					
Glass	0.18	0.19	0.08	0.09	0.13	0.14	0.13	0.14					
Steel	0.26	0.32	0.10	0.13	0.13	0.13	0.19	0.20					
Plastic	0.11	0.17	0.08	0.08	0.13	0.16	0.13	0.16					
Cardboard	_	0.21	_	0.15	_	0.18	_	0.18					
Aluminum	0.40	0.40	0.20	0.24	0.33	0.27	0.33	0.27					

Note: Belts operating dry on a backed-up conveyor may, depending on speed and weight, wear a rough surface on the belting, which may substantially increase the Coefficient of Friction.

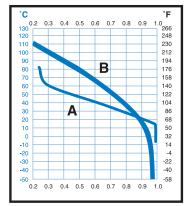
- a. Friction factor values are highly dependent on environmental conditions. The low value of the friction factor range is an experimentally derived friction factor for new belting on new wearstrip. This value should only be used in the cleanest environments or where water or other lubricating agents are present. Most applications should be adjusted based on the environmental conditions surrounding the conveyor.
- b. For Special Applications Materials see appropriate data pages.
- c. Polyethylene generally not recommended for container handling.

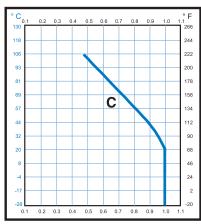
	Table 4 BELT STRENGTHS IN lb/ft (kg/m).										
SERIES	STYLE		SPECIAL APPLICATIONS								
SERIES	STILL	POLYPROPYLENE	POLYETHYLENE	ACETAL & EC ACETAL	MATERIALS						
	This information was incorporated into the chart on page page 22.										

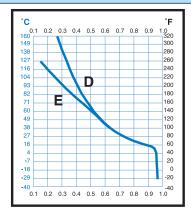
		Ta	able 5 SPROC	CKET AND S	UPPORT QU	ANTITY RE	FERENCE			
Nomin	al Width ^a	N	/linimum Number of	Sprockets Per Shaft	t _p		Minimum Numl	per of Supports		
in.	(mm)	SERIES 200	SERIES 1700	SERIES 100, 400, 800, 850, 1200,	SERIES 900, 1100, 1500, 1600, 2200		00, 1000, 1100, 1600, 1650	SERIES 200, 400, 800, 850, 1200, 1800, 1900, 2200, 2400		
				1400, 1800, 1900	1300, 1000, 2200	Carryway	Returnway	Carryway	Returnway	
2	(51)	1	N/A	1	1	2	2	2	2	
4	(102)	1	N/A	1	1	2	2	2	2	
6	(152)	2	2	2	2	2	2	2	2	
7	(178)	2	2	2	2	3	2	2	2	
8	(203)	2	2	2	2	3	2	2	2	
10	(254)	2	3	2	3	3	2	3	2	
12	(305)	3	3	3	3	3	2	3	2	
14	(356)	3	3	3	5	4	3	3	3	
15	(381)	3	3	3	5	4	4 3		3	
16	(406)	3	4	3	5	4	3	3	3	
18	(457)	3	4	3	5	4	4 3		3	
20	(508)	3	4	5	5	5	3	4	3	
24	(610)	5	5	5	7	5	3	4	3	
30	(762)	5	6	5	9	6	4	5	4	
32	(813)	5	7	7	9	9 7 4 5		5	4	
36	(914)	5	8	7	9	7	4	5	4	
42	(1067)	7	9	7	11	8	5	6	5	
48	(1219)	7	10	9	13	9	5	7	5	
54	(1372)	9	11	9	15	10	6	7	6	
60	(1524)	9	12	11	15	11	6	8	6	
72	(1829)	11	15	13	19	13	7	9	7	
84	(2134)	13	17	15	21	15	8	11	8	
96	(2438)	13	20	17	25	17	9	12	9	
120	(3048)	17	24	21	31	21	11	15	11	
144	(3658)	21	29	25	37	25	13	17	13	
For Oth	er Widths	/idths Use Odd Number of Sprockets at a Maximum 7.5 in. Use Odd Number of Sprockets at a Maximum 5 in. Use O		Use Odd Number of Sprockets at a Maximum 6 in. (152 mm) Spacing	Use Odd Number of Sprockets at a Maximum 4 in. (102 mm) Spacing	Maximum 6 in. (152 mm) Spacing	Maximum 12 in. (305 mm) Spacing	Maximum 9 in. (229mm) Spacing	Maximum 12 in. (305mm) Spacing	

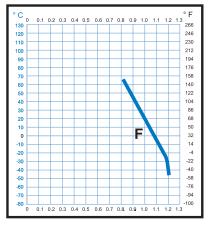

Note:

considered.


- If carryways extend into sprocket area, care should be taken to insure sprockets do not interfere with carryways.
- · These are the minimum number of sprockets. Additional sprockets may be required, see Data Pages for specific applications.
- Additional quantities can be found in the Sprocket and Support Quantity Reference Table for Series 1200 on page 167, Series 1500 on page 197, Series 1700 on page 219, Series 2400 on page 256, and Series 2600 on page 271.
- a. Actual belt widths will vary from nominal. If actual width is critical, contact Customer Service.
- b. Fix center sprocket only. (With two sprockets on shaft, fix right hand sprocket only.)


Starts under no load, with load applied gradually Frequent starts under load (more than once per hour) At speeds greater than 100 FPM (Feet Per Minute) (30 meters/min) Elevating Conveyors ADD 0.2 Elevating Conveyors ADD 0.2 TOTAL Note: At speeds greater than 50 FPM (15 meters/min) on conveyors that are started with backed-up lines, soft start motors should be




SPECIAL APPLICATION MATERIALS

- A Flame retardant
- **B** Nylon
- C Polypropylene composite

- **D** Non FDA nylon
- E FDA nylon
- F Detectable polypropylene

Intermittent exposure above220 °F (104 °C). Avoid high impact below 45 °F (7 °C)

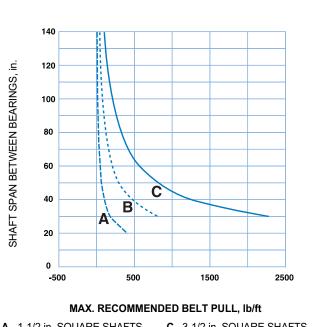
Table 8 SHAFT DATA											
B-SHAFT DATA	(Q) SHA	FT WEIGHT, Ib/	ft (kg/m)	I MOMENT OF							
SIZE	ALUMINUM	CARBON STEEL	STAINLESS STEEL	INERTIA							
SIZE		SIEEL	SIEEL	in. ⁴ (mm ⁴)							
5/8" SQUARE	0.46	1.33 ^a	1.33 ^a	0.013							
1" SQUARE	1.17 ^a	3.40 ^a	3.40 ^a	0.083							
1.5" SQUARE	2.64 ^a	7.65 ^a	7.65 ^a	0.42							
2.5" SQUARE	7.34	21.25 ^a	21.25 ^a	3.25							
3.5" SQUARE	14.39	41.60 ^a	41.60	12.50							
25 mm SQUARE	(1.699)	(4.920) ^b	(4.920) ^b	(32.550)							
40 mm SQUARE	(4.335)	(12.55) ^b	(12.55) ^b	(213,300)							
60 mm SQUARE	(10.05)	(29.11) ^b	(29.11) ^b	(1,080,000)							
65 mm SQUARE	(11.79)	(34.16) ^b	(34.16) ^b	(1,487,600)							
E MODULUS OF ELASTICITY Ib/In² (kg/mm²)	10,000,000 (7000)	30,000,000 (21,100)	28,000,000 (19,700)								

- Intralox USA can supply square shafting machined to specifications in these sizes in Carbon Steel (C-1018), Stainless Steel (303 and 316), and Aluminum (6061-T6).
- Intralox Europe offers square shafting in these sizes in Carbon Steel (KG-37) and Stainless Steel (304).

Table 9 MAXIMUM RECOMMENDED TORQUE ON **DRIVE SHAFT** SHAFT JOURNAL DIAMETER, mm 20 25 30 35 40 45 50 55 60 65 70 75 80 85 100 1000 90 80 70 60 50 40 750 В 500 400 30 TORQUE, kg-mm (× 10³ FORQUE, in-lb (x 10³) 300 C 20 200 10 9 8 7 6 100 75 50 40 3 30 2 20 11.5 0.5 1.0 15 20 2.5 3.0 3.5 SHAFT JOURNAL DIAMETER, in. A - STAINLESS STEEL 303 & 304 C - 316 STAINLESS STEEL (Cold-Rolled) (Annealed) & 304 STAINLESS STEEL (Hot-Rolled)

D - 6061-T6 ALUMINUM

B - C-1018 & KG-37 CARBON

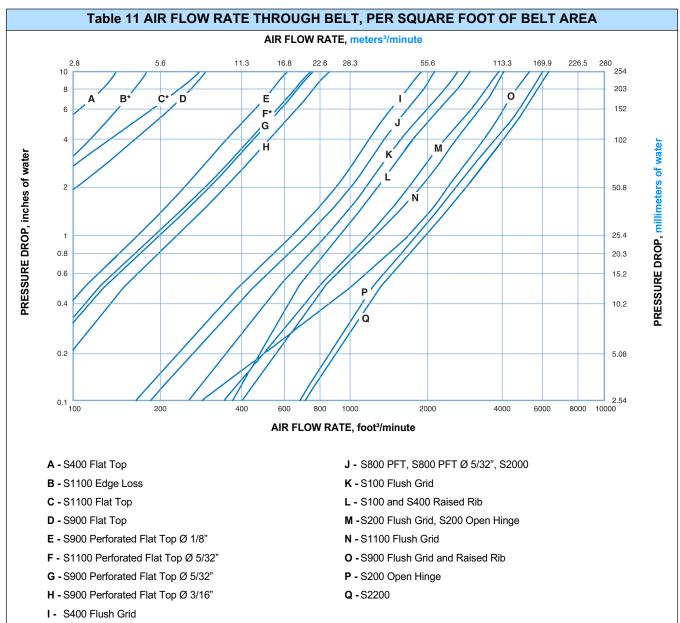

STEEL (Cold-Rolled)

SELECTING THE RECOMMENDED RETAINER RINGS

Intralox recommends the use of retainer rings to fix the location of one sprocket on each shaft to limit transverse movement of the belt during operation. In many applications, spring-type rings are used with success; however these rings require small grooves to be cut into the corners of the shafts. In some applications where belt loads are higher and stresses in the shaft are greater, the presence of ring grooves is undesirable as they create places where stresses are concentrated. Therefore, it is recommended that alternative retainer rings that require no grooves, such as the SELF-SET or SPLIT COLLAR rings, be used in these cases.

Refer to the chart below for recommended limits of BELT PULL versus SHAFT SPAN BETWEEN BEARINGS to determine if retainer ring grooves should be used. For a given shaft size and span, if the BELT PULL, BP, exceeds the values shown, select a ring that requires no grooves in the shaft.

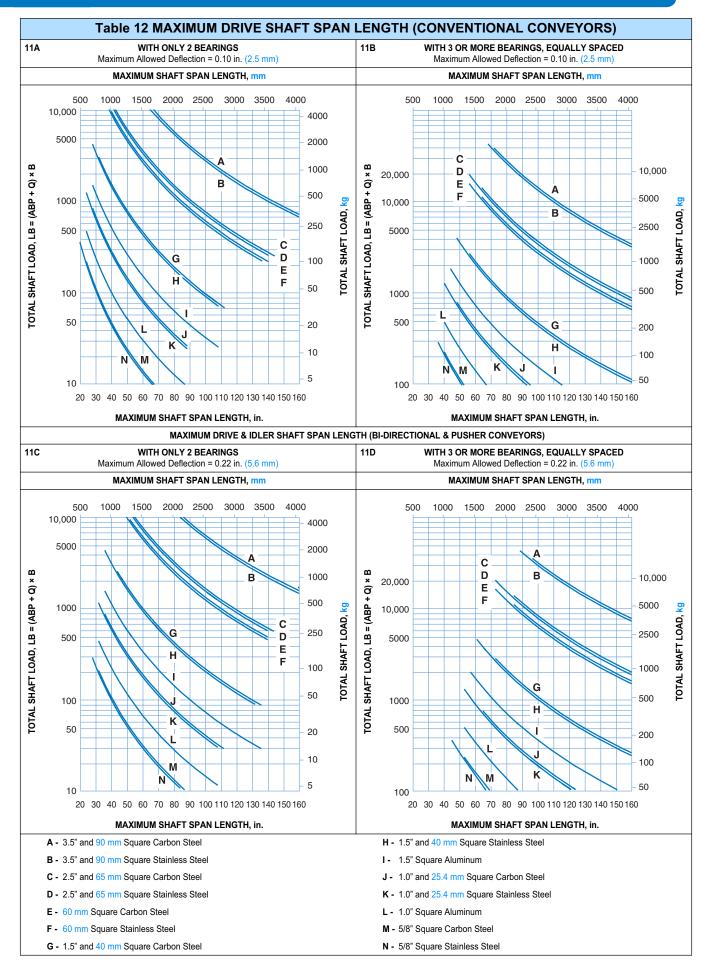
Table 10 BELT PULL LIMITS VS SHAFT SPAN FOR RETAINER RING GROOVES



A - 1-1/2 in. SQUARE SHAFTS

C - 3-1/2 in. SQUARE SHAFTS

B - 2-1/2 in. SQUARE SHAFTS



*SERIES 1100 FLAT TOP/PERFORATED FLAT TOP EDGE LOSS:

In order to go around a 0.875 inch nosebar and achieve self-clearing dead plates, the **Series 1100 Flat Top/Perforated Flat Top** belt does not have a sealed edge. To accurately size the fan, both airflow through the belt and edge loss of airflow must be considered. This example describes how to size the fan flow required for the **Series 1100 Perforated Flat Top** belt.

For a 30 inch wide belt that is 10 feet long, under a vacuum of 4 inches of water, the area under vacuum is 25 square feet. The length under vacuum is 10 feet. As per the Airflow Table, at a vacuum of 4 inches of water, airflow is 450 SCFM per square foot through the belt and 110 SCFM per linear foot for the edge. SCFM = (square feet belt under vacuum \times airflow through the belt) + (linear feet belt \times edge loss). Therefore, total flow is $(25 \times 450) + (10 \times 110) = 12,350$ SCFM.

MEASUREMENT CONVERSION FACTORS

ENGLISH (USA) MULTIPLY E		METRIC (SI)	MULTIPLY BY	ENGLISH (USA)	
UNIT	\rightarrow	UNIT	\rightarrow	UNIT	
		LENGTH			
inch (in.)	25.40	millimeter (mm)	0.03937	inch (in.)	
inch (in.)	0.0254	meter (m)	39.37	inch (in.)	
foot (ft.)	304.8	millimeter (mm)	0.0033	foot (ft.)	
foot (ft.)	0.3048	meter (m)	3.281	foot (ft.)	
		AREA			
inch² (in.²)	645.2	millimeter ² (mm ²)	0.00155	inch² (in.²)	
inch² (in.²)	0.000645	meter ² (m ²)	1550.0	inch² (in.²)	
foot ² (ft. ²)	92,903	millimeter² (mm²)	0.00001	foot² (ft.²)	
foot² (ft.²)	0.0929	meter ² (m ²)	10.764	foot² (ft.²)	
· ,		VOLUME		` '	
foot³ (ft.³)	0.0283	meter³ (m³)	35.31	foot³ (ft.³)	
foot³ (ft.³)	28.32	liter (I)	0.0353	foot³ (ft.³)	
		VELOCITY and SPEED			
foot/second (ft/s)	18.29	meter/min (m/min)	0.0547	foot/second (ft/s)	
foot/minute (ft/min)	0.3048	meter/min (m/min)	3.281	foot/minute (ft/min)	
		MASS and DENSITY			
pound-avdp. (lb)	0.4536	kilogram (kg)	2.205	pound-avdp. (lb)	
pound/foot³ (lb/ft³)	16.02	kilogram/meter3 (kg/m3)	0.0624	pound/foot³ (lb/ft³)	
		FORCE and FORCE/LENGTH			
pound-force (lb)	0.4536	kilogram-force (kg)	2.205	pound-force (lb)	
pound-force (lb)	4.448	Newton (N)	0.225	pound-force (lb)	
kilogram-force (kg)	9.807	Newton (N)	0.102	kilogram-force (kg)	
pound/foot (lb/ft)	1.488	kilogram/meter (kg/m)	0.672	pound/foot (lb/ft)	
pound/foot (lb/ft)	14.59	Newton/meter (N/m)	0.0685	pound/foot (lb/ft)	
kilogram/meter (kg/m)	9.807	Newton/meter (N/m)	0.102	kilogram/meter (kg/m)	
		TORQUE			
inch-pound (in-lb)	11.52	kilogram-millimeter (kg-mm)	0.0868	inch-pound (in-lb)	
inch-pound (in-lb)	0.113	Newton-meter (N-m)	8.85	inch-pound (in-lb)	
kilogram-millimeter (kg-mm)	9.81	Newton/millimeter (N-mm)	0.102	kilogram-millimeter (kg-mm	
		MOMENT of INERTIA			
inch ⁴ (in. ⁴)	416,231	millimeter ⁴ (mm ⁴)	0.0000024	inch ⁴ (in. ⁴)	
inch ⁴ (in. ⁴)	41.62	centimeter ⁴ (cm ⁴)	0.024	inch ⁴ (in. ⁴)	
		PRESSURE and STRESS		, ,	
pound/inch² (lb/in²)	0.0007	kilogram/millimeter² (kg/mm²)	1422	pound/inch² (lb/in²)	
pound/inch² (lb/in²)	0.0703	kilogram/centimeter ² (kg/cm ²)	14.22	pound/inch² (lb/in²)	
. ,		,		. , ,	
pound/inch² (lb/in²)	0.00689	Newton/millimeter ² (N/mm ²)	145.0	pound/inch² (lb/in²)	
pound/inch² (lb/in²)	0.689	Newton/centimeter ² (N/cm ²)	1.450	pound/inch² (lb/in²)	
pound/foot2 (lb/ft2)	4.882	kilogram/meter² (kg/m²)	0.205 pound/foot² (lb/ft		
pound/foot ² (lb/ft ²)	47.88	Newton/meter ² (N/m ²)	0.0209	pound/foot² (lb/ft²)	
		POWER			
Horsepower (hp)	745.7	Watt	0.00134	Horsepower (hp)	
foot-pound/minute (ft-lb/min)	0.0226	Watt	44.25	foot-pound/minute (ft-lb/min	
		TEMPERATURE			
To Convert Fro		То		Use Formula	
Temperature Fahrenheit, °F		Temperature Celsius, °C	°C	= (°F - 32) ÷ 1.8	
remperature Famer	mon, i	Temperature Fahrenheit, °F		$= (1.8 \times ^{\circ}C) + 32$	

CHEMICAL RESISTANCE GUIDE

The chemical resistance data presented in this table is based on information from polymer manufacturers and previous Intralox field experience. The data is indicative only for the conditions under which it was collected and should be considered as a recommendation only, not as a guarantee. This data pertains to chemical resistance only, and the temperatures listed are generally the chemical temperatures. Other design and personal safety concerns were not considered in making recommendations. Prudent application engineering dictates that materials and products should be tested under exact intended service conditions to determine their suitability for a particular purpose.

Chemicals listed without a concentration are for the undiluted chemical. Chemicals listed with a concentration are in solution with water. Descriptions in parenthesis are the active ingredient. In general, as the temperature of an application rises, the chemical resistance of a material decreases. Additional information about chemicals and materials of construction not listed may be obtained by contacting Intralox.

Thermoplastics Elastomers (TPE) are a growing class of polymers that offer a unique combination of plastic and elastomeric properties, the most obvious of which is the ability to be injection molded onto a substrate for achieving some sought after performance criteria. The fact that a rubber (elastomeric) component is present means that the exposure to various chemicals in the application needs to be considered. Sources of chemicals include the product to be conveyed, the materials used to clean and maintain the equipment and belt, along with any other potential sources in the area. It is Intralox's suggestion that appropriate testing be done and consultation with our staff of experts be made early on in order to establish fitness for use n a particular application. In general, TPEs are quite compatible with both weak acids and most alkalis. Alcohols too are known to have little to no effect. Contact with strong acids will pose a problem. With a rubber component present, oils and fats will have a swelling effect over time while organic solvents and a variety of hydrocarbons can be expected to cause problems as well. Generally speaking, fuels of any type will cause problems over time. When it comes to food handling, make sure that the ingredients present in the food are considered and always know that the higher the temperature, the more rapid the reaction between the chemical and the TPE will be.

MATERIAL SUITABILITY CODE

R = Recommended

NR = Not Recommended

Q = Questionable

- = No Available Information

		STANDARD MATERIALS									APPLICA	TIONS M	ATERIAL	.S
CHEMICAL NAME		ropylene	,	thylene		cetal		Acetal	Ny	esistant Ion		lon	Reta Mat	me rdant erial
10 1112	70 °F (21 °C		70 °F (21 °C)	140 °F (60 °C)										
Acetic Acid	R	R	R	Q	_	_	_	_	NR	NR	NR	NR	R	R
Acetic Acid - 5%	R	R	R	R	R	_	R	_	R	NR	Q	NR	R	R
Acetone	R	R	R	R	Q	Q	Q	Q	R	R	R	R	R	R
Alcohol - All Types	R	R	R	R	_	_	_	_	R	R	R	R	R	R
Alum - All Types	R	R	R	R	_	_	_	_	Q	_	_	_	_	_
Aluminum Compounds	R	R	R	R	_	_	_	_	Q	R	R	R	R	R
Ammonia	R	R	R	R	_	_	_	_	R	R	R	R	_	_
Ammonium Compounds	R	R	R	R	_	_	R	_	Q	R	R	R	R	R
Amyl Acetate	Q	NR	Q	NR	_	_	_	_	R	N	R	N	_	_
Amyl Chloride	NR	NR	Q	NR	_	_	_	_	_	_	_	_	_	_
Aniline	R	R	R	NR	_	Q	_	Q	Q	_	_	_	NR	NR
Aqua Regia	NR	NR	Q	NR	_	_	_	_	_	NR	NR	NR	NR	NR
Arsenic Acid	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Barium Compounds	R	R	R	R	_	_	_	_	R	R	R	R	R	R
Barium Soap Grease	R	Q	_	_	_	_	_	_	_	_	_	_	_	_
Beer	R	R	R	R	_	_	_	_	R	_	_	_	R	R
Benzene	Q	NR	Q	NR	R	Q	R	Q	R	R	R	R	R	R
Benzenesulfonic Acid - 10%	R	R	R	R	_	_	_	_	R	_	_	_	_	_
Benzoic Acid	R	R	R	R	_	_	_	_	R	Q	Q	Q	_	_
Borax	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Boric Acid	R	R	R	R	_	_	_	_	Q	R	R	R	_	_
Brake Fluid	R	R	_	_	R	R	R	R	R	R	R	R	R	R
Brine - 10%	R	R	R	R	R	R	R	R	_	_	_	_	_	_
Bromic Acid	NR	NR	NR	NR	_	_	_	_	_	NR	NR	NR	_	_
Bromine - Liquid or Fumes	NR	NR	NR	NR	_	_	_	_	NR	NR	NR	NR	NR	NR
Bromine Water	NR	NR	_	_	_	_	_	_	NR	NR	NR	NR	_	_

MATERIAL SUITABILITY CODE

R = Recommended

NR = Not Recommended

Q = Questionable

— = No Available Information

			STA	ANDARD	MATERI	ALS				PECIAL	APPLICA	TIONS M	ATERIAL	_S
CHEMICAL NAME		opylene		hylene		etal		Acetal	Ny	esistant Ion	_	rlon	Reta Mat	ame Irdant terial
17 un 2	70 °F (21 °C)	140 °F (60 °C)												
Butyl Acetate	NR	NR	Q	NR	_	_	_	_	R	R	R	R	R	R
Butyl Acrylate	NR	NR	R	Q	_	_	_	_	_	_	_	_	_	_
Butyric Acid	R	_	R	Q	_	_	_	_	Q	R	R	R	_	_
Calcium Compounds	R	R	R	R	_	_	_	_	Q	_	_	_	R	R
Calcium Soap Grease	R	Q	_	_	_	_	_	_	_	_	_	_	_	_
Calgonite - 0.3%	R	R	_	_	R	R	R	R	_	_	_	_	_	_
Carbon Dioxide	R	R	R	R	_	_	_	_	R	R	R	R	R	R
Carbon Disulfide	Q	NR	Q	NR	_	_	_	_	R	R	R	R	_	_
Carbon Tetrachloride	NR	NR	NR	NR	R	Q	R	Q	R	R	R	R	R	R
Cellosolve - TM	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Chloracetic Acid	R	R	_	_	_	_	_	_	_	NR	NR	NR	_	_
Chlorine - Gas	NR	NR	Q	NR	NR	NR	NR	NR	_	NR	NR	NR	NR	NR
Chlorine - Liquid	NR	NR												
Chlorine Water (0.4% CI)	R	Q	R	Q	NR	NR	NR	NR	_	NR	NR	NR	_	_
Chlorobenzene	NR	NR	Q	NR	_	_	_	_	R	R	R	R	NR	NR
Chloroform	NR	NR	NR	NR	_	_	_	_	Q	_	Q	_	R	R
Chlorosulfonic Acid	NR	NR	NR	NR	_	_	_	_	NR	NR	NR	NR	NR	NR
Chromic Acid - 50%	R	R	R	Q	_	_	_	_	NR	_	Q	_	_	_
Citric Acid	R	R	R	R	_	_	_	_	_	R	R	R	R	R
Citric Acid - 10%	R	R	R	R	R	_	R	_	R	R	R	R	R	R
Citrus Juices	R	R	R	R	_	_	_	_	R	R	R	R	R	R
Clorox - TM	R	Q	_	_	NR	NR	NR	NR	_	NR	NR	NR	_	_
Coconut Oil	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Copper Compounds	R	R	R	R	_	_	_	_	Q	_	Q	_	R	R
Corn Oil	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Cottonseed Oil	R	R	R	R		_		_				_	_	_
Cresol	R	R	R	Q	_	_	_	_	NR	NR	NR	NR	_	_
Cyclohexane	R	Q	NR	NR	_	_	_	_	_	_	R		R	R
Cyclohexanol	R	Q	Q	NR	_	_	_	_	R	_	R	_	_	_
Cyclohexanone	R	Q	NR	NR					R	_	R	_	_	_
Detergents	R	R	R	R	R	R	R	R	R	_	_	_	_	_
Dextrin	R	R	R	R	_	_	_	_						
Dibutyl Phthalate	R	Q	_	_	_	_	_	_	R	R	R	R	R	R
Diethyl Ether	NR	NR	NR	NR	Q	Q	Q	Q	R	R	R	R	_	_
Diethylamine	R	R		NR	_	_		_	R	_			_	_
Diglycolic Acid - 30%	R	R	R	R	_		_		_				_	
Diisooctyl Phthalate	R	R	_			_	_	_		_		_		_
Dimethyl Phthalate	R	R		_										_
Dimethylamine Dioctyl Phthalate	R R		_	_		_	_		R R	R	R R	R R	R	_
Ethyl Acetate		Q			_ Q	 NR		— ND		R				R
Ethyl Ether	R Q	R Q	Q —	Q _	<u>_</u>	- NK	Q _	NR —	R —	R —	R —	R —	R R	R R
Ethylamine	R	R		_									_	_
Ethylene Chloride	NR	NR		_					_		_		Q	Q
Ethylene Glycol - 50%	R	R	R	R	R	Q	R	Q	R	Q	R	Q	R	R
Ferric / Ferrous Compounds	R	R	R	R	_	_	_	_	Q	_	_	_	_	_
Formaldehyde - 37%	R	R	R	Q		_			_				R	R
Formic Acid - 85%	R	Q	R	R					NR	NR	Q	NR	Q	Q
Freon			R	R	Q	Q	Q	Q	_	_	_	_	R	R
Fuel Oil #2	R	Q	R	NR	Q	Q	Q	Q	R	R	R	R	_	_
Furfural	NR	NR	Q	NR	_	_	_	_	R	_	R	_		
Gasoline	Q	NR	R	NR	R	R	R	R	R	R	R	R	R	R
Glucose	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Glycerol	R	R	_	_	_	_	_	_	R	R	R	R	_	_
Heptane	NR	NR	Q	NR	R	R	R	R	R	R	R	R	R	R
Hexane	R	Q	NR	NR	_	_	_		R	R	R	R	R	R
Hydrobromic Acid - 50%	R	R	R	R	_	_	_	_	NR	NR	NR	NR	_	_
Hydrochloric Acid	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	Q	Q
	-													
Hydrochloric Acid - 10%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	Q	Q

MATERIAL SUITABILITY CODE

R = Recommended

NR = Not Recommended

Q = Questionable

- = No Available Information

			ST	ANDARD	MATERI	ALS			s	SPECIAL	APPLICA	TIONS M	ATERIAL	.S
CHEMICAL NAME		opylene		hylene		cetal		Acetal	Ny	esistant rlon		lon	Reta Mat	ame Irdant erial
TO UNL	70 °F (21 °C)	140 °F (60 °C)	70 °F (21 °C)	140 °F (60 °C										
Hydrogen Peroxide - 3%	R	R	R	R	R	R	R	R	Q	Q	Q	Q	R	R
Hydrogen Peroxide - 90%	Q	Q	R	Q	_			_	NR	NR	NR	NR	R	R
Hydrogen Sulfide	R	R	R	R	_	_	_	_	R	R	R	R	_	_
Hydroiodic Acid	NR	NR	_		_		_	_	_	_		_	_	
Igepal - 50%	R	R	_	_	R	Q	R	Q	_	_	_	_	_	_
lodine - Crystals	R	R	Q	Q	_		_	_	_	NR	NR	NR	_	_
Isooctane	NR	NR	R	_	_	_	_	_	R	R	R	R	_	_
Jet Fuel	Q	NR	Q	Q	R	R	R	R	R	R	R	R	R	R
Kerosene	Q	NR	Q	Q	R	R	R	R	R	_	_	_	R	R
Lactic Acid	R	R	R	R	_	_	_	_	NR	NR	Q	NR	_	_
Lanolin	R	Q	R	R	_	_	_	_	_	_	_	_	_	_
Lard	_	_	R	R	_	_	_	_	_	R	R	R	_	_
Lauric Acid	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Lead Acetate	R	R	R	R	_	_	_	_	R	R	R	R	_	_
Lemon Oil	Q	NR	Q	NR	_	_	_	_	_	_	_	_	_	_
Ligroin	Q	NR	_	_	_	_	_	_	_	_	_	_	_	_
Lime Sulfur	R	_	_	_	_	_	_	_	_	_	_	_	_	_
Linseed Oil	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Lubricating Oil	R	Q	_	_	R	R	R	R	R	Q	R	Q	R	R
Magnesium Compounds	R	R	R	R	_	_	_	_	Q	_	R	_	_	
Malic Acid - 50%	R	R	R	R	_	_	_	_	R	R	R	R	_	
Manganese Sulfate	R	_	R	R	_	_	_	_	Q	Q	Q	Q	_	_
Margarine	R	R	R	R	_	_	_	_			_		_	_
Mercuric Compounds	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Mercury	R	R	R	R	_	_	_	_	R	_	R	_	_	_
Methyl Cellosolve	R					_	_	_	_	_		_		_
Methyl Chloride	NR	NR	_	_	_	_	_	_	_	R	R	R	_	_
Methyl Ethyl Ketone	R	Q	NR	NR	_	_		_	R		R	_	R	R
Methyl Isobutyl Ketone	R	Q	_	_	_	_	_	_	_	_	_	_	_	_
Methylene Chloride	Q	NR	NR	NR	_	_	_	_	Q	Q	Q	Q	NR	NR
Methylsulfuric Acid	R	R	R	R	_	_		_	_	_	_	_	_	_
Mineral Oil	Q	NR	R	NR	R	R	R	R	_	_	_	_	R	R
Mineral Spirits	Q	NR	_	_	_	_	_	_	R	_	_	_	_	_
Molasses	R	R	R	R	_			_	R	R	R	R	_	_
Motor Oil	R	Q		_	R	R	R	R	R	R	R	R	R	R
Naphtha	R	Q	Q	NR	_		_	_	R	R	R	R	R	R
Nickel Compounds	R	R	R	R	_	_			Q		Q			
Nitric Acid - 30%	R	Q	R	R	NR	NR								
Nitric Acid - 50%	Q	NR	R	Q	NR	NR								
Nitric Acid - Fuming	NR	NR												
Nitrobenzene	R	Q	NR	NR	_	_	_	_	Q	_	Q	_	NR	NR
Nitrous Acid	Q	NR	_	_	_	_	_	_	_	_	_	_	_	_
Nitrous Oxide	R	_	_	_	_			_		_	_	_		_
Oleic Acid	R	NR			R	R	R	R	R	R	R	R	R	R
Olive Oil	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Oxalic Acid	R	R	R	R		_	_	_	Q	_	_	_	_	_
Oxygen	NR	NR	_	_	_	_	_	_	R	R	R	R	_	_
Ozone	NR	NR	Q	NR				_	Q	Q	Q	Q		_
Palmitic Acid - 70%	R	R	R	R		_	_	_	R	_	R	_	R	R
Peanut Oil	R	R	_	_	_	_	_	_	_	_	R	_	_	_
Perchloric Acid - 20%	R	R	R	R							_			_
Perchlorothylene	NR	NR	NR	NR	_	_	_	_	Q	NR	Q	NR	_	_
Phathalic Acid - 50%	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Phenol	R	R	R	R	NR	NR								
Phenol - 5%	R	R	R	R	NR	NR								
Phosphoric Acid - 30%	R	R	R	R	_	_	_	_	NR	NR	NR	NR	Q	Q
Phosphoric Acid - 85%	R	R	R	R					NR	NR	NR	NR	Q	Q
Photographic Solutions	R	R	R	R					R	_	R	_		_
	1.	1.5												
Plating Solutions	R	R	R	R	_	_	_	_	_	_	_	_	_	_

MATERIAL SUITABILITY CODE

R = Recommended

NR = Not Recommended

Q = Questionable

— = No Available Information

			ST	ANDARD	MATERIA	ALS			S	PECIAL	APPLICA	TIONS M	ATERIAL	.S
CHEMICAL NAME		opylene		hylene		etal		cetal	Ny	esistant Ion	_	rlon	Reta Mat	me rdant erial
	70 °F (21 °C)	140 °F (60 °C)												
Potassium Hydroxide	R	R	R	R	_	_	_	_	R	_	Q	_	R	R
Potassium lodide (3% lodine)	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Potassium Permanganate	R	Q	R	R	_	_	_	_	NR	NR	NR	NR	_	_
Silver Cyanide	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Silver Nitrate	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Sodium Compounds	R	R	R	R	_	_	R	R	Q	_	_	_	R	R
Sodium Chlorite	R	Q	R	R	_	_	R	R	Q	NR	NR	NR	R	R
Sodium Hydroxide	R	R	R	R	_	_	R	R	R	NR	NR	NR	Q	Q
Sodium Hydroxide - 60%	R	R	R	R	R	R	R	R	R	NR	NR	NR	Q	Q
Sodium Hypochlorite - (5% CI)	R	Q	_	_	NR	NR	NR	NR	NR	_	Q	_	R	R
Stannic Chloride	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Stannous Chloride	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Stearic Acid	R	Q	R	R	_	_	_	_	R	R	R	R	_	_
Succinic Acid	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Sugar	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Sulfamic Acid - 20%	R	R	_	_	NR	NR	NR	NR	_	_	_	_	_	_
Sulfate Liquors	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Sulfur	R	R	R	R	_	_	_	_	R	R	R	R	_	_
Sulfur Chloride	R	_	_	_	_	_	_	_	_	_	_	_	_	_
Sulfur Dioxide	R	R	R	R	_	_	_	_	R	Q	Q	Q	R	R
Sulfuric Acid - 3%	R	R	R	R	R	R	R	R	NR	NR	NR	NR	Q	Q
Sulfuric Acid - 50%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	Q	Q
Sulfuric Acid - 70%	R	Q	R	Q	NR	NR	NR	NR	NR	NR	NR	NR	Q	Q
Sulfuric Acid - Fuming	NR	NR	Q	Q										
Sulfurous Acid	R	_	R	R	_	_	_	_	Q	Q	Q	Q	_	_
Tallow	R	R	R	Q	_	_	_	_	R	R	R	R	_	_
Tannic Acid - 10%	R	R	R	R	_	_	_	_	_	_	_	_	R	R
Tartaric Acid	R	R	R	R	_	_	_	_	Q	Q	R	Q	_	_
Tetrahydrofuran	Q	NR	_	_	_	_	_	_	R	_	R	_	R	R
Toluene	NR	NR	NR	NR	Q	NR	Q	NR	R	R	R	R	R	R
Tomato Juice	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Transformer Oil	R	Q	R	Q	_	_	_	_	R	R	R	R	_	_
Tributyl Phosphate	R	Q	_	_	_	_	_	_	_	_	_	_	_	_
Trichloroacetic Acid	R	R	_	_	_	_	_	_	R	NR	NR	NR	_	_
Trichloroethylene	NR	NR	NR	NR	_	_	_	_	R	NR	Q	NR	_	_
Tricresyl Phosphate	R	Q	_	_	_	_	_	_	_	_	_	_	_	_
Trisodium Phosphate	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Turpentine	Q	NR	Q	NR	_	_	_	_	R	R	R	R	_	_
Urea	R	R	R	R	_	_	_	_	R	R	R	R	_	_
Vinegar	R	R	R	R	_	_	_	_	_	_	_	_	_	_
Wine	R	R	R	R	_	_	_	_	R	R	R	R	_	_
Xylene	NR	NR	NR	NR	_	_	_	_	R	R	R	R	R	R
Zinc Compounds	R	R	R	R	_	_	_	_	Q	_	Q	_	R	R

MATERIAL SUITABILITY CODE

R = Recommended

NR = Not Recommended

Q = Questionable

— = No Available Information

STRAIGHT RUNNING BELT DATA SHEET

Company Name:																		Phor	ie:			_				
Mailing Address:																		Fax:				_				
Shipping Address:																		Dist.	Mgr:							
City & State:											7in·							New	Insta	llatio	n·					
																						_				
Contact:											Γitle:	_					_	Retro	OTIT EX	xistin	g:	_				
I. PRODUCT CHARACTERISTICS	: Prod	duct E	Being	Con	veyed	ł																				
□ Plastic □ 0	ooked	I				⊒ Fro	zen					<u> </u>	Card	boar	rd				i Se	ason	ing				■ Marinade	
□ Wet □ A	luminı	ım				⊒ Ste	el						Stick	v					ı Ra	w	Ü				☐ Sauce	
	lipper					⊒ Gla							USD.	•	SIS E	Pan'r	4			umbly	,					
•																veq (J				,					
	brasiv					⊒ Sh	arp						FDA	Req	l a				ù Otl			_				
☐ Corrosive: Con	pound	t ———					_	Со	ncen	tratio	on _								Temp	eratu	re	_				
II. SANITATION:																										
Method of Cleaning:																		Freq	Jenc\	v :						
Cleaning Chemicals:																		Conc	-		(0/.).		_			_
																							_			
Temperature of Cleaning Media:		_																Time	Belt	Expo	sed:		_			
Belt Scrapers:					_	Fi	inger	Tran	sfer F	Plate	s: _							Brus	nes:				_			
III. APPLICATION DATA:														Carr	ywa	y Ma	iteria	l:								
Width (in. or mm)					Ler	ngth G	C -C	(ft. o	r m)						JHM\				۰	HDI	PE				☐ Nylon	
					-					`	-		_												,	
Product Load (lb/ft² or kg/m²)					-	t Spe				.)	-				teel					Oth	er					
Sprocket PD (in. or mm)	_				- Bor	re Siz	e (ın.	or m	m)		-							up wit	h pro	duct		-				
Temp @ Drive (°F or °C)					Sha	aft Ma	ateria	l					_	Pusl	h Co	nvey	or?		_							
Drive Journal Diameter (in. or mm)		_											_	Cen	ter D	rive	?		_							
Carryway Conditions:		Net				Ory			□ A	bras	sive			Freq	uent	t Sta	rts?		_							
Nosebar?	Sta	atic or	r Dyna	amic										Elev	atior	Cha	ange	(ft. o	r m)			_				
IV. BELT STYLE: SERIES (Check One)	T																							- 1	V. BELT MATERIAL	
	100	200	400	800	850	006	1000	1100	1200	1400	1500	1600	1650	1700	1800	1900	2200	2400	2600	2700	3000	4000	0006	1		
Flat Top	+	100	0	۵	180	٠ •	0	_	0	0	_	0	_	_	_	_	100		~	100	(*)	0	0)	1	Detectable Polypropylene	
Flat Top - Cone Top								۵																⊣ ⊢	Electrically Conductive	
Flat Top - Cone Open Hinge		_			_																			⊣ ⊢	FDA Nylon	0
Flat Top - Embedded Diamond Top Flat Top - Mesh Top		-			-																			⊣ ⊢	Flame Retardant Hi-Impact	
Flat Top - Mesh Nub Top				-		-						0			_										Non-FDA Nylon	
Flat Top - Mini-Rib												0													Polyacetal	
Flat Top - Non-Skid										ū														1	Polyethylene	
Flat Top - Nub Top																									Polypropylene	
Flat Top - Open Hinge															۵										Polypropylene Composite	۵
Flat Top - Perforated		_			_																			4 L	PVDF	
Flat Top - Tough Flush Grid					-					۵	۵						0			0		0	0	4		
Flush Grid - High Deck	-	+	-	-		-		-	-	-	-			_			0	0	_	-		-	_	-		
Flush Grid - Nub Top			1																					1		
Flush Grid - Open Hinge																								1		
Flush Grid with Insert Rollers																	۵									
Friction Top - Diamond/Square										۵																
Friction Top - Flat		-			_																			4		
Friction Top - Round Friction Top - Oval		_	-		-	-							1											+		
Friction Top - Oval			-		_					-			1				0							+		
Knuckle Chain								-				\vdash					<u> </u>	1						1		
Mold-To-Width								۵				t										۵		1		
ONEPIECE™ Live Transfer						٥		۵		۵														1		
Open Grid		۵				۵]		
Raised Rib		-			-								1			ū		۵						-		
Raised Rib - Non-Skid																								J		

360

ECTION 4

FORMULAS AND TABLES

Roller Top												
Roller Top - Ball Belt												
SPIRALOX®										ū		
SeamFree™ Flat Top												
SeamFree™ Open Hinge Flat Top												
SeamFree™ Open Hinge Nub Top												
SeamFree™ Open Hinge Cone Top												
SeamFree™ Minimum Hinge Flat Top												
SeamFree™ Minimum Hinge Nub Top												
SeamFree™ Minimum Hinge Cone Top												

Flights (Y/N)	Height (in. or mm)		Spacing (in. or mm)		
If bulk conveyance, product size:	Max		Min		Average
Method of loading: Mechanical	Chute		Hand		Other
Other Belt Service Factors (please elaborate)	Belt Impact		Cutting on Belt	Abrasive Envir	ronment
Product Output Required: Unit	/Time	/Density	lb/ft³ or kg/m³	/Max. Height (i	in. or mm)
Specification of Current Belt:					
Other Comments:					

FORMULAS AND TABLES

RADIUS BELT DATA SHEET

Company Name:		Dhono	
Company Name:		Phone:	
Mailing Address:		Fax:	
Shipping Address:		Dist. Mgr:	
	Zip:		
Contact: T	itle:	Retrofit Existing:	
I. APPLICATION DATA: Product Being Conveyed:		Sketch/Notes	
Number of Turns? (4 max)			
Length of Straight Run #1 (ft. or m)			
Inside Radius of Turn #1 (in. or mm)			
What is the Turn Angle in Degrees of Turn #1			
Turn Direction of Turn #1 (right or left)			
Length of Straight Run #2 (ft. or m)			
Inside Radius of Turn #2 (in. or mm)			
What is the Turn Angle in Degrees of Turn #2			
Turn Direction of Turn #2 (right or left)			
Length of Straight Run #3 (ft. or m)			
Inside Radius of Turn #3 (in. or mm)			
What is the Turn Angle in Degrees of Turn #3			
Turn Direction of Turn #3 (right or left)			
Length of Straight Run #4 (ft. or m)			
Inside Radius of Turn #4 (in. or mm)			
What is the Turn Angle in Degrees of Turn #4		(Indicate Drive Location	on)
Turn Direction of Turn #4 (right or left)	PRODUCT CHARACT	EDISTICS	
	□ Plastic	□ Cardboard	□ Wet
Length of Final Straight Run (ft. or m)	☐ Aluminum	☐ Glass	☐ Fresh
	□ Steel	□ Sauce	☐ Slippery
Belt Width (in. or mm) Belt Material:		☐ Frozen	☐ Abrasive
Carryway Material (UHMW or Steel)		☐ Marinade	☐ Seasoning
Turn Rail Material (UHMW, steel or roller)		☐ Cooked	□ Raw
Does Product Back Up On Belt? % of Belt Backed Up		□ Dry	☐ Crumbly
Belt Speed (ft. or m/min) Belt Loading (lb/ft² or kg/m²) on Conveyor		□ Corrosive□ USDA-FSIS Req'd	□ Sticky □ Sharp
Elevation Change (ft. or m) Incline Decline		- CODA-1 SIS Ney d	⊒ Onarp
Where:			
Operating Temp Product Temp (at infeed)			
Product Size Product Wt/Piece			
Pcs/ft² or Pcs/m²			

362

SECTION 4

FORMULAS AND TABLES

II. SANITATION:			
Method of Cleaning:		Frequency:	
Cleaning Chemicals:		Concentration (%):	
Temperature of Cleaning Media:		Time Belt Exposed:	
Belt Scrapers:	Finger Transfer Plates:	Brushes:	
Fax this page to Intralox Customer Service for a free analysis of your design using Series 2200 Radius Belt, Series 2400, Series 2600, Series 2700, Series 3000 Turning, and Series 4000 belts.			

FORMULAS AND TABLES

SPIRAL BELT DATA SHEET

Company Name:			Phone:	
Mailing Address:			Fax:	
Shipping Address:			Dist. Mgr:	
City & State:	Zip:		New Installation:	
Contact:	Title:		Retrofit Existing:	
I. APPLICATION DATA: Product Being Conveyed:			PRODUCT CHAR	ACTERISTICS
Purpose of Spiral:		□Dry	C	1 Wet
Product:	-	□Frozen	ū	⊒Fresh
Spiral Temperature:	-	□Sauce	Г	I Clinnon,
Belt Width (in. or mm):		□Breaded		ūSlippery ūAbrasive
Actual Cage Radius (in. or mm) from Spiral to Inside of Belt Edge:		□Battered	•	I DIGOTO
Tier Cooping (in or mm):		□Marinade	C	⊒Seasoning
Number of Tiers:				
Additional Belt Length (including all belt not driven by spiral cage, i.e., infeed length,		□Cooked	C	⊒Raw
discharge length, and length through the overdrive and take-up systems) (ft. or m):			C	© Crumbly
	_	- Corrective	Г	DOMala.
Belt Speed (ft/min or m/min):	_	□Corrosive □USDA-FSIS Reg'd		ūSticky ūSharp
Product Weight (lb/ft² or kg/m² on belt):	_	2005/(1010 Requ		2 0 πατ β
II. SPIRAL DATA:				
Spiral System Manufacturer:				_
Is Spiral Up or Down:	Curi	rent Belt Employed:		
Wearstrip Material:	Met	hod of Loading Belt:		
Spacing of Carryway Wearstrips:				
Number of Wearstrips:				
Cage Bar Surface Material (UHMW, Steel, etc.): Cage Bar Width: Spacin		Spacing:		
Clearance Between Wearstrip Surface and the Bottom of the Next Tier Wearstrip Surface	pport:			
Does Belt Turn Right or Left onto Spiral Cage:				
Gravity Take-up Weight: Gravity Take-up Movement/Stroke:				
Overdrive Speed Control Type (Mechanical, Electrical):				
Overdrive Shaft Size:	Jou	rnal Diameter:		
Idler Roller Diameters:	Size	e:		
Overdrive Type (Drives on Top or Bottom of Belt):				
Type of Return Rail for Spiral Radius Belt Return (bull wheel, UHMW guide, rollers, e	etc.):			
II. SANITATION:				
Method of Cleaning:			Frequency:	
Cleaning Chemicals:			Concentration (%):	
			Time Belt Exposed (Temp):
Belt Scrapers: Finger Transfer Plates:		Brushes:		
Fax this page to Intralox Custome		ice for a free analysis of	your design	

Α

ACCUMULATION TABLES: Conveyors absorb that temporary product overflows due to fluctuations in downstream operations. They may be uni-directional or bidirectional.

ACETAL: A thermoplastic that is strong, has a good balance of mechanical and chemical properties, and has good fatigue endurance and resilience. It has a low coefficient of friction. Temperature range is from-50 °F (-45 °C) to +200 °F (93 °C). Its specific gravity is approximately 1.40.

ADJUSTED BELT PULL: The belt pull adjusted for Service Factors.

ALLOWABLE BELT STRENGTH: The rated belt strength adjusted for Temperature and Strength Factors.

В

BELT PITCH: center distance between hinge rods in an assembled belt.

BELT PULL: The tensile load on a belt after the product loading, belt weight, conveyor length, total friction factor and elevation change is applied.

BRICKLAYED: Belt construction where plastic modules are staggered with those in adjacent rows.

CATENARY SAG: A belt or chain hanging under the influence of gravity between two (2) supports will assume the shape of a curve called a "catenary".

CENTER-DRIVEN BELTS: Belts driven by the sprocket at a point midway between the hinge rods.

CHEVRON CARRYWAYS: Support rails which are placed in an overlapping "V" pattern. This array supports the conveyor belt across the full width while distributing the wear more evenly. This pattern is very effective when moderate abrasion is present, providing a self cleaning method.

CHORDAL ACTION: The pivoting action of the belt's modules about their hinge rods as the modules engage and disengage the sprocket. This results in a pulsation in the belt's speed, and a rise and fall in the belt's surface.

COEFFICIENTS OF FRICTION: A ratio of frictional force to contact force, which is determined experimentally. Coefficients of friction are usually stated for both dry and lubricated surfaces, and for start-up and running conditions.

GLOSSARY

DEAD PLATE GAP: Gap or clearance between the surface of a conveyor belt and any other surface onto which products or containers being conveyed are to be transferred.

DEFLECTION: Displacement or deformation due to loading.

E

ELEVATING CONVEYORS: These conveyors have several types of variations and are employed when product elevation is necessary. Elevators almost always employ flights and sideguards, which present special consideration in the design.

EXTRA-WIDE SPROCKETS: Available only in a **Series 200**, hinge-driven, diameter sprocket. Provides an extra-wide (double) driving area.

F.D.A.: Food and Drug Administration. Federal agency which regulates materials that may come in contact with food products.

FINGER TRANSFER PLATES: Comb-like plates that are employed with Intralox Raised Rib belts to minimize problems with product transfer and tipping.

FLAT PLATE CARRYWAYS: These continuous are sheets, usually of metal, over which the belt slides.

FLAT TOP STYLE: Modular plastic belt with a smooth, closed surface.

FLIGHTS: A vertical surface across the width of the belt. An integral part of the Intralox belt, employed where elevation of product is required (e.g., Incline Conveyors, Elevator Conveyors).

FLUID COUPLINGS: A device which allows the driven conveyor to accelerate gradually to operating speeds. Fluid couplings are recommended when frequent starts and stops of high speed or heavily loaded conveyors occur, and they also serve as an overload safety.

FLUSH GRID STYLE: Modular plastic belt with a smooth, open grid.

FRICTION: The force which acts between two bodies at their surface of contact, so as to resist their sliding on each other (see Coefficients of Friction).

G

GRAVITY TAKE-UP: Usually consists of a roller resting on the belt in the returnway, its weight providing the tension needed to maintain proper sprocket engagement. It is most

GLOSSARY

effective when placed near the drive shaft end of the returnway.

Н

H.D.P.E.: High Density Polyethylene resin used in the manufacture of wearstrip. Employed, where abrasion is not a problem, to reduce friction between belt and the carryway surface.

HINGE RODS: Plastic rods that are used in the assembly of modular plastic belts. They also serve as the hinges around which the belt modules rotate.

HINGE-DRIVEN BELTS: Belts driven at the hinges by the sprocket.

HORSEPOWER:

English (USA) Units — The power delivered by a machine while doing work at the rate of 550 foot pounds per second (ft-lb/sec), or 33,000 foot pounds per minute (ft-lb/min). The watt and kilowatt are power units used in rating electrical equipment. One kilowatt is equal to 1,000 watts. One horsepower equals 746 watts or 0.746 kilowatts. One kilowatt (kW) is equal to 1.341 horsepower.

Metric Units — The power delivered by a machine while doing work at the rate of 75 kilogram-meters per second (kg-m/sec), or 4500 kilogram-meters per minute (kg-m/min). One kilowatt (kW) is equal to 1.359 metric horsepower. One metric horsepower equals 736 watts or 0.736 kilowatts and closely approximates one English (USA) Horsepower, 746 watts.

Where calculations in this manual are done in metric units, power calculations are computed in Watts. Wherever Horsepower (HP) is used, it refers to the English (USA) value.

1

IDLER ROLLERS: Steel or plastic pipes that are supported by stub shafts used in place of idle shafts and sprockets. These pipe rollers may be considerably stiffer than a length of solid square shaft of comparable weight.

INERTIA: The tendency of a body to remain at rest or to stay in motion, unless acted upon by an outside force.

INTERMEDIATE BEARINGS: An additional bearing (or bearings) located near the center of a shaft to reduce shaft deflection to an acceptable level.

K

KNUCKLE CHAIN:: Narrow chain with relatively high strength that is commonly used in multiple strand applications. Knuckle Chain typically handles boxes, totes, pans or other large products.

L

LOAD-BEARING ROLLERS: Steel or plastic pipes supported by stub shafts which provide stiffness. Employed on center-drive Accumulation Conveyors on either side of the drive shaft.

N

MODULAR CONSTRUCTION: Injection-molded plastic modules assembled into an interlocked unit and joined together by hinge rods.

MODULE PITCH: The distance between the rod hole centerlines on a module.

MODULES: Injection-molded plastic parts used in the assembly of an Intralox belt.

MOLYBDENUM-FILLED NYLON (NYLATRON): A type of wearstrip plastic.

MOMENT OF INERTIA: A characteristic of the shape of an object which describes its resistance to bending or twisting.

N

NYLATRON: (see Molybdenum-filled Nylon).

0

ONEPIECE™ LIVE TRANSFER BELT: Modular plastic belt with an integral transfer edge for smooth, self-clearing, right angle transfers onto takeaway belts.

OPEN AREA: The percentage of area in the plane of the plastic belt that is unobstructed by plastic.

OPEN GRID STYLE: Modular plastic belt with low profile, transverse ribs.

OPEN HINGE STYLE: Modular plastic belt with exposed hinge rods and a flush surface.

OUTSIDE DIAMETER: The distance from the top of a sprocket tooth to the top of the opposite tooth, measured through the centerline of the sprocket.

P

PARALLEL CARRYWAYS: Belt support rails that may be either metal or plastic, placed on the conveyor frame parallel to the belt's travel.

PERFORATED FLAT TOP STYLE: Modular plastic belt with a smooth, perforated top.

PITCH: (see Belt Pitch or Module Pitch).

PITCH DIAMETER: Diameter of a circle, which passes through the centerlines of hinge rods, when the belt is wrapped around a sprocket.

POLYACETAL: (see Acetal).

POLYETHYLENE: A lightweight thermoplastic, buoyant in water, with a specific gravity of 0.95. It is characterized by superior fatigue resistance, flexibility and high-impact strength. Exhibits excellent performance at low temperatures, -100 °F (-73 °C). Upper continuous temperature limit is +150 °F (+66 °C).

POLYPROPYLENE: A thermoplastic material that provides good chemical resistance characteristics. Polypropylene is buoyant in water, with a specific gravity of approximately 0.90. It is suitable for continuous service in temperatures from $+34 \, ^{\circ}\text{F} \ (+1 \, ^{\circ}\text{C})$ to $+220 \, ^{\circ}\text{F} \ (+104 \, ^{\circ}\text{C})$.

PULL-PULL BI-DIRECTIONAL CONVEYORS: There

are three common variations of the Pull-pull type of reversing (bi-directional) conveyors: the center-Drive method, the Two-Motor drive method, and the Single-Motor/Slave-Drive method.

PUSHER BAR: A device used on bi-directional accumulation tables (*i.e.*, *in the bottling and canning industries*) which allows the table to be filled to its capacity and assists in an orderly and complete discharge from the table back onto the conveying line.

PUSH-PULL BI-DIRECTIONAL CONVEYORS:

A conveyor employing one motor that will be reversing (bidirectional). In one direction the belt is being pulled and in the reversing direction the belt is being pushed.

R

RAISED RIB STYLE: Modular plastic belt with a high profile, longitudinally ribbed surface.

RETAINER RINGS: A shaft and sprocket accessory which restricts the lateral movement of the sprocket with respect to the shaft.

RETURNWAYS: The path the belt follows toward the idler shaft and sprockets.

RODS: (see Hinge Rods).

ROLLER CARRYWAYS: Carryway surface that does not provide a continuous running surface. The chordal action, as the modules pass over the rollers, may cause problems if product tippage is critical.

S

SCREW TAKE-UP: These types of take-ups shift the position of one of the shafts, usually the idler, through the use of adjustable machine screws.

SCROLL: Device used in place of the idle shaft and sprockets to prevent debris from accumulating on the inside of the conveyor belt. Scrolls are fabricated by welding steel left hand pitch and right hand pitch helical ribs to a common round shaft.

GLOSSARY

SERVICE FACTORS: Driven machines and power sources may be classified by severity factors, which reflect the type of service placed upon the power transmission components. High service factors are assigned to more severe applications, thereby providing sufficient component strength to render an acceptable life expectancy for that component. Additional service factors may be required for continuous service applications requiring braking (e.g., starts/stops) or reversing action (e.g., bidirectional accumulation tables). Service factors help to insure optimal service life of the components.

SIDEGUARDS: Intralox belt accessory which forms a vertical wall near the belt edge and is an integral part of the belt

SINGLE-MOTOR/SLAVE-DRIVE: Employing one motor (reversible) using a roller chain, alternately driving either of two chain sprockets on the conveyor shaft. This drive system is usually limited to short conveyors because of the length of roller chain involved.

SOFT START MOTORS: When rapid starts and stops of high speed and loaded conveyors occur, these devices are recommended. They allow the driven conveyor to accelerate gradually to operating speeds, which is beneficial for all conveyor components.

SPECIFIC GRAVITY: A dimensionless ratio of the density of a substance to the density of water.

STATIC ELECTRICITY: An electrical charge build-up on a surface as a result of rolling or sliding contact with another surface.

Т

TAKE-UP UNITS: (see Gravity or Screw Take-Up).

THERMAL EXPANSION/CONTRACTION: With few exceptions, the dimensions of all substances increase as their temperature is increased and contract as their

temperature is decreased. Plastics expand and contract rather significantly.

TORQUE: The capability or tendency of a force for producing torsion or rotation about an axis. For example, the twisting action on a turning shaft.

TWO-MOTOR DRIVE DESIGN: In this design, the belt is alternately pulled in either direction (e.g., bi-directional accumulation tables). Returnway belt tension is relatively low, requires rather expensive additional hardware (e.g., an additional motor), slip clutches and electrical control components.

U.H.M.W.: Ultra High Molecular Weight, polyethylene resin used in the manufacture of wear-strip. It has very good wear characteristics, impact resistance and has an excellent combination of physical and mechanical.

U.S.D.A.-F.S.I.S.: United States Department of Agriculture. Federal agency which regulates equipment that may be employed in Meat, Dairy and Poultry facilities.

WEARSTRIP: Plastic strips that are added to a conveyor frame to increase the useful life of the frame and the conveyor belting. Also helpful in reducing sliding friction forces.

П			
	Γ	IJ	\mathbf{A}

A	Chevron Array
Abrasion Resistance System316	Chordal Action
Abrasion Resistant (AR) Nylon	Coefficient of Friction
Accumulation Tables	90° Container Transfers
Acetal	Control of Belt Length
Electrically Conductive (EC)19	Conveyor design issues for friction modules
Adjusted Belt Pull	Conveyors, Special
Allowable Belt Strength	Bi-directional
Ambient Conditions	Pull-Pull, Center-Drive
Analysis for sideflexing belts	Pull-Pull, Single-Motor and Slave-Drive
Analysis for straight running belts	Pull-Pull, Two-Motor Drive
Angle and clip-on wearstrips	Elevating
Anti-Sag Carryway Wearstrip Configuration322	Custom Wearstrips
В	D
Back Tension	Dead Plate Gap
Basic Conveyor Frame Requirements	Dead Plates
Bearing Journals (see Shaft)	Deflection
Belt	Design Requirements
Carryways	Detectable Polypropylene
Construction4	Diamond Friction Top
Selection	Diamond Friction Top Ultra126
Style	Dimension Definitions
Flat Top	Drive Guidelines
Flush Grid6	Drive Method
Friction Top9	Drive Shaft (see Shaft)
Knuckle Chain	Span
Mould To Width13	Torque Loading
Open Grid	Dynamic Effects Of High Speed Operation
Perforated Flat Top8	-
Raised Rib	E
Roller Top	Electrically Conductive (EC) Acetal
Textured Flat Top	Elevating Conveyors
Belt Accessories	Elongation (strain) under load
Belt Carryways	Elongation due to break-in and wear
Belt Data	End-off/End-on Transfers
Belt Material Properties	Enduralox Polypropylene
Belt Pitch	Expansion Due to Water Absorption
Belt Pull	Extended Pins
Belt Selection Instructions	Extended Tabs
Belt Selection Process5	Extra-wide Sprockets
Belt Style And Material Availability22	EZ Clean In Place System312
Belt Surface Wear	EZ Clean Sprocket
Bi-Directional Conveyors326	
Bricklayed	F
С	FDA
	Finger Transfer Plates
Carryway (see Wearstrip)	Flame Retardant Thermoplastic Polyester (FR-TPES) 19
Anti-Sag Carryway Wearstrip Configurations322	Flat Finger-Joint Wearstrips
Solid Plate	Flat Friction Top
Wearstrip	Flat Friction Top Ultra
Catenary Sag 323 365	Flat Plate Carryways
Catenary Sag 323, 365 Center-driven Belts 365	Flat Top Style
Chemical Resistance	Flat Wearstrips

INDEX

 Flight Material
 308

 Flights
 365

Friction	Moment of Inertia
Friction Factors	N1
Friction Modules	N
Friction Surface9	Niviatuon
C	Nylatron
G	Nylon
Community of the Community Material	Heat Resistant (HR)
General Application Sprocket Material	•
General Purpose Materials	0
Glass Filled Nylon	O
Glass Filled Nylon Split	Onepiece™ Live Transfer
Gravity Take-Up	Open Area
Gravity Take-up	Open Grid
••	Open Hinge
Н	Outside Diameter
HDPE	Р
Heat Resistant (HR) Nylon	·
High Speed Intralon	Parallel Carryways
High Strength Polyurethane Composite	Perforated Flat Top Style
Hinge Rods	Pitch
Hinge-Driven Belts	Pitch Diameter
Horsepower	Polyacetal
1101scpower	Polyethylene
1	Polypropylene
I .	Polypropylene Composite
Idler Rollers	Polysulfone
Inertia	Polyurethane
Intermediate Bearings	Polyurethane Composite
intermediate bearings	Power Requirements
1	Product Line
J	Product Transfer
Journal Bearing, Split	90° Container Transfers
Journal Dearing, Spite	Onepiece™ Live Transfer
K	Pull-Pull Bi-directional Conveyors326, 367
13	Pusher Bar
Keyway 303	Pusher Bars
Knuckle Chain	Push-Pull Bi-directional Conveyors
	Push-pull Bi-directional Conveyors
L	PVDF
Load-Bearing Rollers	R
M	Raised Rib Style
	Raised Rib Surface8

Requirements

Returnway

Retaining Sprockets319

Returnways and Take-Ups322

Materials

Nylon

Electrically Conductive (EC)19

UHMW 310

INDEX

Rods	Float4
Roller Carryways	Retaining319
Roller returnways	Sprocket Material Availability
Roller Top11	Square Shaft (see also Shaft)
Rollers	Stainless Steel
Hold Down	Stainless Steel Backed UHMW Wearstrip309
Rollers as Carryways	Stainless Steel Retaining Rings
Rollers as Idle Shafts and Sprocket Replacements	Standard Belt Materials
_	Standard Flat Wearstrips
S	Standard Retainer Rings
	Standard Returnways
Screw Take-up	Static Electricity
Scroll	Steel, Stainless
SeamFree	Straight, parallel runners
Series 100	Surface Finishes
Series 200	_
Series 400	Т
Series 800	m 1 . rr
Series 850	Take-Up
Series 900	Gravity Style
Series 1000	Screw Style
Series 1100	Take-Up Units
Series 1200	Temperature
Series 1400	Effects
Series 1600	Limits
Series 1650	Variations
Series 1700	Textured Flat Top
Series 1800	Thermal Expansion and Contraction322, 336, 367
Series 1900	Thermoplastic
Series 2200	Tolerances
Series 2400	Torque
Series 2600	Transfer Design Guidelines
Series 2700	Two-Motor Drive Design
Series 3000	
Series 4000	U
Series 9000	•
Service Factor	UHMW
Shaft	UHMW Pressure Sensitive Tape
Dimensions and Tolerances	Ultra Abrasion Resistant Polyurethane
Maximum Allowable Torque16	USDA-FSIS
Sizes and Materials	
Tolerances	V
Shaft Strength	
Sideflexing Conveyors	Vacuum Transfer Applications
Sideguards	
Single-motor/slave-drive	W
Sliderbed returnways	
"Slip-Stick" Effect	Wearstrips
Soft Start Motors	Angle
Soft Starting Motors and Fluid Couplings	Carryways321
Solid Plate Carryways	Chevron Array321
Special Application Belt Materials	Clip-On
Special Application Materials	Design Considerations
Special Application Sprocket Material	Flat Finger-Joint
Specific Added Belt Pull	Installation
Specific Gravity	Parallel Runners
Spricket	Snap-On
Sprocket .315 EZ Clean .310	Standard Flat
LL Gean	Types and Sizes

372

INDEX

intralox.

X